
--
Syste1n 8000™
ZEUS Languages/Programming Tools Manual

03-3249-01

May, 1983

Copyright 1983 by Zilog, Inc. All rights reserved. No part
of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, elec
tronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of Zilog.

The information in this publication is subject to change
without notice.

Zilog assumes no responsibility for the use of any circuitry
other than circuitry embodied in a Zilog product. No other
circuit patent licenses are implied.

ZEUS Languages/Programming Tools Manual

ZEUS Release 3.2

10/14/83

Zilog

Preface

This document and the related manuals listed below provide
the complete software technical documentation for the stan
dard ZEUS Operating System.

System 8000 ZEUS Utilities Manual

System 8000 ZEUS Reference Manual

System 8000 ZEUS Administrator Manual
(Models 21/31)

03-3150

03-3255

03-3246

System 8000 Model 11 ZEUS Administrator 03-3254
Manual

Of particular interest to the System 8000 programmer are
Sections 2 (system calls) and 3 (C library functions) of the
System 8000 ZEUS Reference Manual.

In addition, the following manuals, also supplied with the
system, complement the System 8000 ZEUS
Languages/Programmin~ Tools Manual:

The £ Programming Language by Brian W. Kernighan and Dennis
M. Ritchie

The Z8000 PLZ/ASM Assembly Language Programming Manual (03-
3055)

iii Zilog iii

v

Zilog

TABLE OF CONTENTS

Introduction to ZEUS Languages/Programming Tools
A Tutorial Introduction to ADB

INTRO
ADB

AS
c

CALL CONV
C-ISAM

Optimization:

System 8000 Assembly Language Reference Manual
The C Programming Language
System 8000 Calling Conventions
C-ISAM Programmer's Guide
Screen Updating and Cursor Movement
A Screen Packag 1e
Lex: A Lexical Analyzer Generator
Lint: A C Program Checker
Make
The M4 Macro Processor
Zeus Programmin9
ZEUS PLZ/ASM Assembler User Guide
System 8000 PLZ/SYS User Guide
Screen Handling
YACC: Yet Another Compiler-Compiler

Zilog

CURSES
LEX

LINT
MAKE

MP
PGMG

PLZ/ASM
PLZ/SYS

SCREEN
YACC

v

INTRODUCTION Zilog INTRODUCTION

Introduction to ZEUS Languages/Programming Tools Manual

Languages

ZEUS supports many languages FORTRAN, Pascal, BASIC,
among them. C is the primary programming language, however:
recent changes to C and special considerations of program
ming in C on the System 8000 are listed in ~ f Programming
Language (C). ZEU~ Programming (PGMG) explains how C pro
grams interact with ZEUS and handle command arguments,
input/output, etc. Lint: ~ f Program Checker (LINT) detects
implementation dependent code and other bad features.

PLZ/SYS is another ZEUS language. Along with the PLZ/ASM
assembler, it can be used to design low-level programs. So
too can the System 8000 assembler, known simply as the
assembler. With the 3.1 release, this assembler becomes the
System 8000 core assembler operating as the backend proces
sor for the ZEUS high-level language compilers and translat
ing programs written in the language described in System
~000 Assembly Language Reference Manual (AS).

All languages supported by ZEUS can communicate with each
other and share common libraries provided they observe cer
tain calling conventions described in System 8000 Calling
~onventions (CALL CONV) •

Tools

A Tutorial Introduction to ADB describes a program which is
used to examine core fiies---resulting from aborted programs,
to patch object files, and to run programs with embedded
breakpoints.

Make describes a program used to maintain a large group of
interrelated files, such as the source code files and their
associated object files that are behind a large C program.

Le~: ~ Lexical Analyzer Generator and ~: Yet Another Com
piler Compiler decribe tools useful in developing programs
which apply translation rules to input.

1 Zilog 1

INTRODUCTION Zilog INTRODUCTION

The M4 Macre> Processor (MP) is a user's manual for a front
.end progra11i suitable for use with high-level languac~es such
as C and Fortran.

CURSES: Screen Updating and Cursor Movement Optimization: ~
Librarl Package and SCREEN: Screen Interface ~ibrary:
describe a set of tools for developing C programs that main
pulate video displays. ~-ISAM Programmer's Guide describes
the available tools for the creation and maintenance of
indexed file systems.

2 Zilog 2

A Tutorial Introduction to ADB *

* This information is based on an article originally
written by J.F. Maranzano and S.R.Bourne, Bell Laboratories.

ADB Zilog ADB

ii Zilog ii

ADB Zilog ADB

Pref ape

This document contains information on ADB {A De Bugger), a
new debugging program. With ADB, it is possTble-to examine
core files resulting from aborted programs, print variable
contents in a variety of formats, patch files, and run pro
grams with embedded breakpoints.

This document is written as a t~torial. It is assumed that
the reader is familiar with the. C language.

The examples referenced in the text are located in Appendix
A. For ease of reference, it .is recommended that the exam
ples be brought up on the terminal while the text is read
from the hard copy.

iii Zilog iii

ADB Zilog ADB

iv Zilog iv

ADB Zilog

Table of Contents

SECTION 1 A QUICK SURVEY
1.1.
1. 2.
1. 3.
1. 4.
1. 5.

Basic Command Format
File Locations .•..••.
Current Address••••
Formats
General

. ...

SECTION 2 DEBUGGING C PROGRAMS
2 .1.
2.2.
2.3.
2.4.
2.5.

Debugging a Core Image
Calling Multiple Functions
Setting Basic Breakpoints

.....
. .

Setting Advanced Breakpoints
Using Other Breakpoint Facilities

SECTION 3 MA.PS ••••••••••••••••••••• •" •••••••••••••••••

SECTION 4 ADVANCED USAGE
4.1. General ,,
4.2. Formatted Dump !I •. •

4.3. Directory Dump
4.4. I list Dump • fl •••• ' " 4.5. Value Conversion

SECTION 5 PATCHING t• ••••••••••••••••••••••••••••••••••

SECTION 6 CAUTIONS

v Zilog

ADB

1-1

1-1
1-1
1-1
1-2
1-3

2-1

2-1
2-2
2-3
2-5
2-8

3-1

4-1

4-1
4-1
4-3
4-3
4-3

5-1

6-1

v

ADB Zilog ADB

APPENDIX A PROGRAM EXAMPLES A-1

APPENDIX B ADB SUMMARY B-1

vi Zilog vi

ADB Zilog ADB

SECTION 1
A QUICK 'SURVEY

1.1. Basic Conunand Format

The ADB command copies core to an output file. The command
format is:

adb objfile corefile

where objfile is an executable ZEUS file (default is a.out)
and corefile (default is cored is a core image file. - When
the defaults are use~d, the COiili.iand appears as:

adb

The file name minus (-) means ignore an argument, as in:

adb - core

1. 2. File Locatiom1

ADB has requests for examining locations in the contents of
objfile, (the ? request) or the corefile (the/ request).
The general form of these requests is:

address ? format

or

address / format

where format describes the printout (Section 2.4).

1 .. 3. Current Addre~;s

ADB maintains a current addre,s, called dot, similar in
function to the current pointer in the ZEUS editor. The
request:

.,10/d

prints ten decimal numbers starting at dot. Dot then refers
to the address of the last ite~ printed.

1-1 Zilog 1-1

ADB Zilog ADB

When an address is entered, the current address is set to
that location, so that:

0126?i

sets dot to octal 126 and prints the instruction at that
address.

When used with the ? or / requests, the current address can
be advanced by typing a new line, and it can be decremented
by typing ~

Addresses are represented by expressions of decimal, octal,
and hexadecimal integers, and symbols from the program under
test. These can be combined with the operators +, -, *, %
(integer division), & (bit and), I (bit inclusive or), #
(round up to the next multiple), and - (not). All arith-
metic within ADB is 32 bits. When typing a symbolic address
for a C program, type name or name: ADB recognizes both
forms.

1.4. Formats

To print data, specify a collection of letters and charac
ters that describe the format of the printout. Typing a
request without a format causes the new printout to appear
in the previous format. The following are the most commonly
used format letters:

b
c
0

d
f
i
s
a
u
n
r

one byte in octal
one byte as a character
one word in octal
one word in decimal
two words in floating point
Z8000 instruction
a null terminated character string
the value of dot
one word as unsigned integer
print a new line
print a blank space
backup dot

Format letters are also available for long values (for exam
ple, D for long decimal and F for double floating point).

1-2 Zilog 1-2

ADB Zilog

1 . 5. General Requee~ts

Requests of the form

address,count command modifier

set dot to address and execute the command count times.

The following table gives general ADB command meanings:

Command

?
I
= . .
$
;
l

Meaning

Print contents from a.out file - --Print contents from core file
Print value of "dot"
Breakpoint control
Miscellaneous requests
Request separator
Escape to shell

Use the request $q or $Q (or control-D) to exit from ADB.

1-3 Zilog

A.DB

1-3

ADB Zilog

SECTION 2
DEBUGGING C

1

PROGRAMS

2. 1. Debugging a Co1:-e Image

ADB

Example 1 (Appendix 1~) changes the string pointed to by
charp, then writes the character string to the file indi
cated by argument 1. The common error shown is that a null
character ends a character string. In the loop to print the
characters, the ending condition is based on the value of
the pointer charp, not the character that charp points to.
Executing the program produces a core file because of an
out-of-bounds memory reference.

The following explanation refers to Example 2.

ADB is invoked by thE~ command:

adb a.out core

The first debugging request:

$c

is used to give a C backtrace through the subroutines
called.

The next request

$C

is used to give a C backtrace plus an interpretation of all
the local variables in each function and their values in
octal.

The next request

$r

prints the registers, including the program counter and an
interpretation of thE~ instruction at that location.

The request

$e

prints out the value:s of all external variables.

2-1 Zilog 2-1

ADB Zilog ADB

The request

$m

produces a report of the contents of the map:s. A map exists
for each file handled by ADB. The map for the ~-out file is
referenced by ?, and the map for the core file is referenced
by /. USE! ? for instructions and / for data when looking at
programs.

To see the contents of the string pointed to by charp, enter

*charp/s

This uses charp as a pointer in the core file and prints the
information as a character string. This printout shows that
the pointE~r to the character buffer points to an address
outside of the program's memory.

The request

.=o

prints the current address, not its contents, in octal.
This has been set to the address of the first argument. The
current address, dot, is used by ADB to ke 1ep th•~ current
location. It allows reference to locations relative to the
current address; for example,

.-10/d

2.2. Calling Multiple Functions

The C pro9ram shown in Example 3 calls functions !_,, .9,1 and !:!_
until thE~ stack is exhausted and a core image is produced.
The following explanation refers to Example 4.

Enter the debugger with the command

adb

which assumes the names a.out and core
file and core image file-respectively.

$c

for the •executable
The request

fills a page of backtrace references to f, .9:.1 and h. Enter
ing DEL terminates the output and returns to AiDB request
level-.-

2-2 Zilog 2-2

ADB Zilog ADB

The request

,5$C

prints the five most recently called procedures.

~ach function (f,s_,h) has a counter of the number of times
it was called. The request

fcnt/d

prints the decimal value of the counter for the function f.

To print the the decimal value of x in the last call of the
function !!, 1 type

h.x/d

It is not currently possible to print the value of local
variables.

2.3. Setting Basic Breakpoints

The C program in Example 5 changes tabs into blanks (adapted
from Software Tools by Kernighan and Plauger, pp. 18-27).

Run this program under the control of ADB (Example 6) by

adb a.out -

Set breakpoints in the program as:

address:b [request]

The requests

settab:b
open:b
read:b
tabpos:b

set breakpoints at the start of these functions.

To print the location of breakpoints, enter

$b

The display indicates a count field. A breakpoint is
bypassed count -1 times before causing a stop. The command
field indicates the ADB requests to be executed each time

2-3 Zilog 2-3

ADB Zilog ADB

the breakpoint is encountered. In the example, no command
fields are present.

Displaying the original instructions at the function settab
sets the breakpoint to the entry point of the settab rou
tine. Display the instructions using the ADB reques:r--

settab,S?ia

This request displays five instructions starting at ~ettab
with the addresses of each location displayed. Another
variation is

settab,S?i

which displays the instructions with only the starting
address.

The addresses are accessed from the a.out file with the ?
command. When asking for a printout of multiple items, ADB
advances the current address the number of bytes .necessary
to satisfy the request. In Example 6, five instructions are
displayed and the current address is advanced 18 (decimal)
bytes.

To run the program, enter

:r

To delete a breakpoint, for instance the entry to the func
tion settal~, enter:

settab::d

To continUE~ execution of the program from the brc~akpoint,
enter

:c

Once the program has stopped {in this case at the breakpoint
for open), ADB requests can be used to display the contents
of memory. For example, use

$C

to display a stack trace, or

tabs/ax

to print three lines of 80 locations each from the array
called tabs. At location open in the C program, sE~ttab has

2-4 Zilog 2-4

ADB Zilog ADB

been called to set a one in every eighth location of tabs.
Printing the tabs array allows verification of settab.

2.4. Setting Advan<~ed Breakpoints

Continue execution of the program (Example 6) with

:c

is displayed each time. The single character on the left
edge is the output from the C program.

Continue the program with the command

:c

The program hi ts thE~ first breakpoint at tabpos because
there is a tab following the "This" word of the data.

Several breakpoints of tabpos occur until the program
changes the tab into equivalent blanks. Remove the break
point at that location by entering

tabpos:d

If the program is continued with

:c

it resumes normal execution after ADB prints the message

a.out:running

The ZEUS quit and interrupt signals act on ADB itself rather
than on the program being debugged. If such a signal
occurs, the program being debugged is stopped and control is
returned to ADB. To save the signal and pass it to the test
program, enter

:c

This can be useful when testing interrupt handling routines.
Enter

:c 0

if the signal is not to be passed to the test program.

2-5 Zilog 2-5

ADB Zilog ADB

Now reset the breakpoint at settab and display the
tions located there when the breakpoint is reached.
accomplished by:

instruc
This is

settab:b settab,S?ia

Owing to a bug in early versions of ADB (including the ver
sion distributed in Generic 3 ZEUS), these statements must
be written as:

settab:b
read,3:b
settab:b

settab,5?ia;0
main.c?C;0
settab,5?ia;0

The :0 sets dot to zero and stop at the breakpoint. To
request each occurrence of the breakpoint and stop after the
third occurrence, type:

read,3:b tabs/Bx

This request prints the local variable c in the function
main at each occurrence of the breakpoint. The semicolon
separates multiple ADB requests on a single line.

NOTE

Settin.g a breakpoint causes the value of dot to be
changed. Executing the program under ADE& does not
change dot. For example, the conunands

settab:b .,S?ia
open:b

print the last value dot was set to (example open)
not the current location (example siettaiilat
which the program is executing.

A breakpoint can be overwritten without first deleting the
old breakpoint. Enter

settab:b settab,S?ia; *

The display of breakpoints

$b

shows the above request for the settab breakpoint. When the
breakpoint at settab is encountered, the ADB requests are
executed. The location at settab has been changed to plant
the breakpoint. All the other locations match their

2-6 Zilog 2-6

ADB Zilog ADB

original value.

The execution of each function (f, .9_1 and h in Example 3)
can be monitored by planting nonstop breakpoints. Call ADB
with the executablE~ program of Example 3 as follows:

adb ex3 -

Enter the followin9 breakpoints:

h:b
g:b
f :b
:r

hcnt/di~
gcnt/d:;
fcnt/d;:

h.hi/;
g.gi/;
f.fi/;

h.hr/
9.gr/
f.fr/

Each request line indicates that the variables are printed
in decimal (by the specification d). The format is not
changed and the d can be left.off all but the first request.

The output in Example 7 illustrates two points. First, the
ADB requests in the breakpoint line are not examined until
the program under test is run. This means any errors in
those ADB request::; are not detected until run time. At the
location of the error, ADB stops the program.

Example 7 also illustrates the way ADB handles register
variables. ADB uses the symbol table to address variables.
Re9ister variables, like f .fr in the previous example, have
pointers to uninitialized places on the stack and print the
message "symbol not found."

Another way of getting at the data in this example is to
print the variables used in the call as with

f :b
g:b
:c

fcnt/d;
gcnt/d;

f.a/;
g.p/;

f.b/;
g.q/;

f.fi/
g.gi/

'The operator / was used instead of ? to read values from
the core file. The output for each function, as shown in
Example 7, has the same format. For the function f, for
example, it shows the name and value of the external vari
able fcnt. It also shows the address on the stack and value
of the-variables ~' E_, and fi.

The addresses on the stack continue to decrease until no
address space is left for program execution. At this time
the program under test aborts. A display with names is pro
duced by requests

f:b fcnt/d; f.a/"a="d; f.b/"b="d; f.fi/"fi="d

2-7 Zilog 2-7

ADB Zilog ADB

In this format, the quoted string is printed literally and
the d produces a decimal display of the variables. The
results are shown in Example 7.

2.5. Using Other Breakpoint Facilities

Arguments and change of standard input and output are passed
to a program as

:r ar9l arg2 <infile >outfile

This request. aborts any existing program under test a.nd res
tarts a.out.

The program being debugged can be single-steppE~d by

:s

If necessary, this request starts the program being debugged
and stops after executing the first instruction.

ADB allows a program to be entered at a specific address by
entering

address:r

The count field is used to skip the first n bre!akpoints as

,n:r

The request

,n:c

is also used for skipping the first n breakpoints when con
tinuing a program.

A program is continued at an address different from the
breakpoint by

address:c

The program being debugged runs as a separate process and is
aborted by

:k

2-8 Zilog 2-8

ADB Zilog

SECTION 3
MAPS

ADB

ZEUS supports several executable file formats that tell the
loader how to load the program file. File type E707 is the
most common and is generated by a C compiler invocation such
a.s cc pgm.c. An E711 file is produced by a C compiler com
mand of the form cc -i pgm.c. ADB interprets these dif
ferent file formats and provides access to the different
segments through a set of maps (see Example 8).

To print the maps, enter

$m

In E707 files, both instructions and data (I & D) are inter
mixed. This makes it impossible for ADB to differentiate
data from instructions, and some of the printed symbolic
addresses look incorrect (for example, printing data
addresses as offsets from routines).

In E711 files with separated I & D space, the instructions
and data are also separated. However, in this case, since
data is mapped through a separate set of segmentation regis
ters, the base of the data segment is also relative to
address zero. In this case, Since the addresses overlap, it
is necessary to use the ?* operator to access the data space
of the a.out file.

Example 9 shows the! display of two maps for the same program
linked as an E707 file and an E711 file respectively. The
b, e, and f fields are used by ADB to map addresses into
file addresses. The fl field is the length of the header at
the beginning of the file (020 bytes for an a.out file and
02000 bytes for a £Ore file).

The f2 field is the~ displacement from the beginning of the
file to the datcL. For an E707 file with mixed text and
data, this is the same as the length of the header; for an
E711 files, this is the length of the header plus the size
of the text portion.

The b and e fields are the stqrting and ending locations for
a segment. Given an address, A, the location in the file
{either ~-out or core) is calculated as:

3-1

bl<A<el => file address = (A-bl)+fl
b2<A<e2 => file address = (A-b2)+f2

Zilog 3-1

ADB Zilog ADB

Locations can be accessed by using the ADB defined vari
ables. The $v request prints the following variables ini
tialized by ADB:

b
d
s
t
m

base address of data segment
length of the data segment
length of the stack
length of the text
execution type (E707 and E711)

In Example 9 those variables not present are zero.
variables can be used by expressions such as

<b

These

in the address field. Similarly, the value of the variable
can be changed by an assignment request such a

02000>b

which sets b to octal 2000. These variables are useful to
know if the file under examination is an executabl1e or core
image file.

ADB reads the header of the core image file to :find the
values for these variables. If the second file specified is
not a core file, or if it is missing, the header of the exe
cutable file is used.

3-2 Zilog 3-2

ADB

4.1. General

Zilog

SECT.ION 4
ADVANCED USAGE

ADB

It is possible with ADB to combine formatting requests to
provide elaborate displays. Several examples follow.

4.2. Formatted Dump

To print four octal words followed by their ASCII interpre
tation from the data space of the core image file, enter

<b,-l/4o4"8Cn

The various request pieces mean:

<b

<b,-1

4o

4"

SC

n

The request:

The base address of the data segment.

Print from the base address to the end of
file. A negative count is used here and
elsewhere to loop indefinitely or until some
error condition, such as end of file, is
detected.

Print four octal locations.

Back up the current address four locations
{to the original start of the field).

Print eight consecutive characters using an
escape convention. Each character in the
range 0 to 037 is printed as @ followed by
the~ corresponding character in the range 014·0
to 0177. An@ is printed as @@.

Print a new line.

<b,<d/4o4"8Cn

allows the printing to stop at the end of the data segment.
The <d provides the data segment size in bytes.

The formatting requests can be combined with the ADB ability
to read in a s:cript to produce a core image dump script.

4-1 Zilog 4-1

ADB Zilog ADB

Invoke ADB as:

adb a.out core < dump

to read in a script file, dump, of requests. An example of
such a script is:

120$w
4095$s
$v
=3n
$m
=3n"C Stack Backtrace"
$C
=3n"C E:xternal Variables"
$e
=3n 11 Registers 11

$r
0$s
=3n"Data Segment"
<b,-l/8ona

The request 120$w sets the width of the output to 120 char
acters (normally, the width is 80 characters). ADB prints
addresses as symbol + offset.

The request 4095$s increases the maximum permissible offset
to the nearest symbolic address from 255 (default) to 4095.

The request = can be used to print literal strings. Head
ings are provided in this dump program with requests of the
form

=3n"C Stack Backtrace"

which spaces three lines and prints the literal string.

The request $v prints all nonzero ADB variables (Example 8).
The request 0$s sets the maximum offset for symbol matches
to zero, thus suppressing the printing of symbolic labels in
favor of octal values. This is only done for the printing
of the data segment. The request

<b,-l/8ona

prints a dump from the base of the data segment to the end
of file with an octal address field and eight octal numbers
per line.

Example 11 shows the results of some formatting requests on
the C program of Example 10.

4-2 Zilog 4-2

ADB Zilog ADB

4.3. Directory Dump

Example 12 dumps the contents of a directory made up of an
integer inumber followed by a 14-character name

adb dir -
=n8t 11 Inum 11 8t 11 Name"
0,-1? u8tl4cn

In this example, the u prints the inumber as an unsigned
decimal integer, the 8t means that ADB spaces to the next
multiple of 8 on the output line, and the 14c prints the
14-character file name.

4.4. !list Dump

The contents of the ilist of a file system, such as
/dev/src, is dumped with the following set of requests:

adb /dev/src -
02000>b
"?m <b
<b,-l? 11 flags 11 8ton"links,uid,gid"8t3dn",

size"8tDn"addr"8t20un"times"8t2YnY2na

In this example, the value of the base for the map was
changed to 02000 (by saying ?m<b) because that is the start
of an ilist within a file system. The last access time,
last modify time, and creation time are printed with the
2YnY operator. Example 12 shows portions of these requests
as applied to a directory and file system.

4.5.. Value Conversion

ADB can convert values from one representation to another.
For example:

072 = odx

prints

072 58 %3a

which are the octal, decimal, and hexadecimal representa
tions of 072 (octal). ADB keeps track of format so that as
subsequent numbers .are entered. they are printed in the pre
vious formats. Character values are similarly converted.
For example:

4-3 Zilog 4-3

ADB Zilog ADB

•a• = crb

prints

%0061

It can also evaluate expressions, but all binary operators
have the same precedence, which is lower than for unary
operators.

4-4 Zilog 4-4

ADB Zilog

SECTION 5
PATCHING

ADB

Patching files with ADB is done with the write (w or W)
request, not to be confused with the ed editor write com
mand. This is ofte!n used in conjunction-With the locate, (1
or L) request.

The request syntax for 1 and w is:

address range file designator command argument

where the address range gives the characters to be searched,
the file designator is ? or /, the command is 'either a write
or locate variation, and the argument is an expression and
can support decim2Ll and octal numbers or character strings.
The address range can appear as zero, one, or two charac
ters, including dot (current address). The request 1 is
matched on two bytes, and L is used for four bytes. The
request w writes two bytes, and W writes four bytes. For
example,

0, 1000?1
1000?1

?l

searches the original file from 0 to 1000
SE~arches the original file from 1000 to end
SE~arches the entire file

To modify a file, call ADB as

adb -w filel file2

When called with this option, file! and file2 are created
and opened for both reading and writing.

For example, to change the word "This" to "The" in the exe
cutable file in Exa.mple 10, use the following requests:

adb -w ex7 -
.?l 'Th'
• ?W 'The '

rrhe request ?l starts at dot and stops at the first match of
"Th" having set dot to the address of the location found.

1rhe use of ? writes to the a. out file. The form ?* is used
for an E711 file.

More frequently, the request is typed as:

?l 'Th'; ?s

5-1 Zilog 5-1

ADB Zilog ADB

This locates the first occurrence of "Th" and prints the
entire string. Execution of this ADB request sets dot to
the address of the 11 Th 11 characters.

Following is an example of the utility of the patching
facility that has a C program with an internal log:Lc flag.
The flag can be set through ADB and the program can be run.

adb a.out -
:s argl arg2
f lag/w l
:c

The :s request is normally used to single step through a
process or start a process in single-step mode. In this
case, it starts a.out as a subprocess with arguments argl
and arg2. If there is a subprocess running, ADB wiri tes to
it rather than to the file. The w request causes fl<~ to be
changed in the memory of the subprocess.

5-2 Zilog 5-2

ADB Zilog

SECTION 6
CAUTIONS

ADB has the following idiosyncrasies:

ADB

1.. The value of local variables cannot currently be
printed.

2. Function calls and arguments are put on the stack by
the C save routine. Putting breakpoints at the entry
point to routines means that the function appears not
to have been called when the breakpoint occurs.

3. m1en printing addresses, ADB uses either text or data
symbols from the a.out file. This sometimes causes
unexpected symbol names to be printed with data {for
example, savr5+022). This does not happen if? is used
for text or ins;tructions and / is used for data.

6-1 Zilog 6-1

ADB Zilog

APPENDIX A
PROGRAM EXAMPLES

Example 1
char *charp = "this is a sentence";

main(argc, argv
int argc;
char **argv;
{

int fd;
char cc;
if (argc < 2
{

}

printf("Input file missing\n");
exit(8);

if (fd = open(argv[l],0))== -1)
{

}

printf("%s : not found\n", argv[l]);
exit (8);

charp = "hello";
printf("debug 1 %s\n'", charp);

while(charp++)
write (fd, *charp, l);

}
***l* **

A-1 Zilog

ADB

A-1

ADB

ad.b a.out core

ADB: 88000 1.2
? $c
no process
? $C
no process
? $r
r0
rl
r2
r3
r4
rs
r6
r7
r8
r9
rl0
rll
rl2
rl3
rl4
sp
f cw
pc

main:

~;0000

%0000
%:0000
%0000
%:0000
%0000
%0000
%0000
%0000
%0000
%0000
%0000
%0000
%0000
%0000
%0000
%0000
%0000

? $e
environ:
charp:

- iob:
sobuf:

-lastbu:
-sibuf:
nd:

end:
-deverr

errno:
? $m
? map

/ map

bl
b2

=
=

%0
%0

bl = %0

jr

%ffbc
%1400
%113c
%0000
%0f26
%0000
%133c
%0000
%0000
%0009

'a.out'

'core'

b2 = %fa00

A-2

Zilog

Example 2

main+%7c

el = %f 3a
e2 = %f 3a

el = %1400
e2 = %10000

Zilog

fl = %28
f2 = %28

fl = %400
f2 = %1800

ADB

A-2

ADB

? *charp/s end+%c4:
data address not found
? charp/s
charp:

? main.argc/d

Zilog

Sorry, local variable names not implemented
? $q
***l* **

A-3 Zilog

ADB

A-3

ADB Zilog

Example 3
int fcnt, gent, hcnt;
h(x,y)
{

}

g(p,q)
{

}

f(a,b)
{

}

main {)
{

}

int hi; register int hr;
hi = x+l;
hr = x-y+l;
hcnt++;
f(hr,hi);

int gi; register int gr;
gi = q-p;
gr = q-p+l;
gent++;
h(gr,gi);

int fi; register int fr;
fi. = a+2*b;
fr = a+b;
fcnt++;
g(fr,fi);

f{l,l);

***l * 11'*

A-4 Zilog

ADB

A-4

ADB Zilog

Example 4
adb

ADB: 88000 1.2
:r
? • , $c
f()

_g()
h()

=f()

? , 5$C
Local variables not implemented
_h()

_g()

f() -

_h()

_g

? fcnt/d
fcnt:

? gcnt/d
_gent:

A-5

stack frame:
%02f6: %0000
%02f8: %0000
%02fa: %0000
%02fc: %0000
%02fe: %007a (return address)

stack frame:

stack

stack

%0300: %2lb4
%0302: %10db
%0304: %10d9
%0306: %10db
%0308: %00ae (return address)

frame:
%030a: %10d9
%030c: %0002
%030E~: %2lb4
%031'~: %0002
%0312: %0048 (return address)

frame:
%0314: %10d7
%0316: %10d8
%0318: %10d9
%03la: %10d8
%031.:: %007a (return address)

%0311;: %2lb0
%03212J: %10d9
%032:2: %10d7
%0324: %10d9
%0326: %00ae (return address)

2157

2157

Zilog

ADB

.A.-5

ADB Zilog

? hcnt/d
bent: 2157

? h.x/d
Sorry, local variable names not implemented
? $q
***!* **

A-6 Zilog

ADB

A-6

ADB Zilog

Exampl,e 5
#define MAXLINE 80
#define YES 1
#define NO 0
#define TABSP 8

char input[] = "data,..;
int tabs[MAXLINE];

main ()
{

}

int fd;
int col, *pt.ab;
char c;
ptab = tabs;
settab(ptab);
col = l;
if ((fd = open(input, 0)) == -1)
{

}

printf("%s : not found\n", input);
exit(8);

while(read(fd, &c, 1) > 0)
{

}

swit.ch(c)
{

}

case '\t':
while(tabpos(col) l= YES)
{
putchar (' ') ;
col++;
}
break;
case • \n':
putchar (' \n 1

) ;

col = l;
break;
default:
putchar(c);
break;

tabpos(col)
int col;
{

A-7

if (col > MAXLINE)
return(YES);

else

Zilog

ADB

A-7

ADB

}

settab(tabp)
int *tabp;·
{

YES);
}

int i;

for

***l* ~~*

A-8

Zilog ADB

return (NO);

i=0; i <=MAXLINE; i++)
(i % TABSP) ? (tabs[i] = NO (tabs[i] =

Zilog A-8

ADB

adb a.out -

ADB: 88000 1.2
? settab:b
? open:b
? read:b
? tabpos:b
? $b
breakpoints
count bkpt
1 tabpos
1 -read
1 open
1 -settab
? settab,S?ia
set tab: jr

-settab+%2: clr
-settab+%6: cp
-settab+%c: jr
-settab+%e: ld
-settab+%12:
? settab,5?i
set tab: jr

? ::r

clr
cp
jr
ld

Zilog

Example 6

command

settab%48
%0002(sp}
%0002(sp},#%0050
gt, settab+%44
r3,%0002(sp}

settab+%48
%0002(sp}
%0002(sp},#%0050
gt, settab+%44
r3,%0002(sp}

ADB

fig5: running
breakpoint settab: jr settab+%48
? settab:d
? :c
fig5: running
breakpoint
? $C
_open(}

_main (}

? tabs/Bx
tabs: %0001

%0001
%0001

? :c

A-9

_open: ld

stack frame:
%ffb2:

stack frame:
%ffb4:
%ffb6:
%ffb8:
%ffba:
%ffbc:

%0000 %0000 %0000
%0000 %0000 %0000
%0000 %0000 %0000

Zilog

r0,r7

%0048 (return address}

%0000
%0001
%0fd4
%0000
%0022 (return address)

%0000 %0000 %0000 %0000
%0000 %0000 %0000 %0000
%0000 %0000 %0000 %0000

A-9

ADB Zilog

figS: running
breakpoint read: ld r0,r7
? :c
figS: running
breakpoint read: ld r0,r7
? tabpos:d
? settab:b settab,S?ia
? settab,S:b settab,S?ia; 0
? read,3:b tabs/Bx
? $b
breakpoints
count bkpt command
3 read tabs/ax
l -settab settab,S?ia; 0
l ._open
?:c
? figS: running
T tabs: %0001 %0000 %0000 %0000 %0000
h-tabs: %0001 %0000 %0000 %0000 %0000
i-tabs: %0001 %0000 %0000 %0000 %0000
breakpoint read: ld r0,r7
? $q
***l* **

A-10 Zilog

ADB

%0000 %0000 %0000
%0000 %0000 %0000
%0000 %0000 %0000

A-10

ADB Zilog

Example 7
adb ex3 -

ADB: 88000 1.2
? h:b hcnt/d; h.hi/; h.hr/
? g:b gcnt/d; g.gi/; fofr/
? :r
ex3: running
gent: 0

Sorry, local variable names not. implemented
? f:b fcnt/d; f.a/"a = "d; f.h/ 11 b = "d; f.fi/"fi = "d
? g:b gcnt/d; g.p/"p = "d; g.q/"q = "d; g.gi/"gi = "d
? h:b hcnt/d; h.x/"x = "d; h.y/"y = "d; h.hi/"hi = "d
? : r
ex3: running
fcnt: 0

Sorry, local variable names not implemented
? $q
***l* **

A-11 ZilOg

ADB

A-11

ADB Zilog ADB

Example 8
E707 files

a.out hdr text+data
I I

0 r5

core hdr text+data stack
I I
0 D s

E711 files (separated I and D space)

a.out hdr text data
I I
0 T 0

core hdr data stack
I I
0 D s E

The following adb variables are set.

E707 RM E711

b base of data 0 b 0

d length of data03/28/83 17:20:050-B D

s length of stack s s s

t length of text 0 T T

A-12 Zilog A-12

ADB Zilog ADB

Exampl~ 9
adb mapE707 coreE707

ADB: 58000 1.1
? $m
? map 'mapE7'217 1

bl = %0 el = %de fl = %38
b2 = $0 e2 = %de f 2 = %38

I map 'eoreE707'
bl = %0 el = %100 fl = %400
b2 = %200 e2 = %1000 f 2 = %500

? $v
variables

address
e - %a4

other
d = %100
m = %e707
s = %fe00
? $q

adb mapE711 eoreE711

ABD: 88000 1.1
? $m
? map 'mapE711'

bl = %0 el = %100 fl = %38
b2 = %0 e2 = %0 f 2 = %138

I map 'coreE711 11

bl = %0 el = %100 fl = %400
b2 = %200 e2 = %10000 f 2 = %500

? variables
address
e = %a4
other
d = %100
m = %e711
s - %fe00
t = %100
? $q
***l* ***

A-13 Zilog A-13

ADB

char
int
int
long
char
main ()
{
one = 2;
}

strl[]
one =
number
lnum =
str2[]

***l* **

A-14

=

=

=

Zilog

Example HJ
11 This is character string";
1;
456;
1234L;

ADB

"This is the second character string";

Zilog A-14

ADB Zilog ADB

Example 11
adb mapE711 coreE711

ADB: 88000 1.1
? <b,-1/Soa
strl 052150 064563 020151 071440 060440 061550 060562 060543

strl+%10: 072145 071040 071564 071151 067147 000000 000001 000710

lnum: 0000001 002322 037640 000000 052150 064563 020151 071440

str2+%8: 072150 062440 071545 061557 067144 020143 064141 071141

str2+%18: 061564 062562 020163 072162 064556 063400 000000 177662

environ+%2: 00000e1 000000 000000 000000 000000 000000 000000 000000

environ+%12: 00000121 000000 00~000 000000 000000 000000 000000 000000

environ+%22: 00000(21 000000 000000 000000 000000 000000 000000 000000

environ+%32: 000000 000000 000000 000000 000000 000000 000000 000000

environ+%42: 00000'2J 000000 00121000 000000 000000 000000 000000 000000

environ+%52: 000000 000000 000000 000000 000000 000000 000000 000000

environ+%62: 000000 000000 000000 000000 000000 000000 000000 000000

environ+%72: 00000~' 000000 000000 000000 000000 000000 000000 000000

environ+%82: 00000~' 000000 000000 000000 000000 000000 000000 000000

environ+%92: 000000 000000 00"000 000000 000000 000000 000000 000000

environ+%a2: 00000~' 000000 00'1'000 000000 000000 000000 000000 000000
? <b,20/4on""8Cn
strl: 05215" 064563 020151 071440 This is

06044" 061550 060562 060543 a charac
07214!> 071040 071564 071151 ter stri
067147 000000 000001 000710 ng@'@'@'@a@aH
000000 002322 037640 000000 @'@'@dR? @'@'
052150 064563 020151 071440 This is
07215,~ 062440 071545 061557 the seco
067144 020143 064141 071141 nd chara
061564 062562 020163 072162 cter str
064556 063400 000000 177662 ing@'@'@'@2
000000 000000 000000 000000 @'@'@'@"@"@"@"@"
00000,(J 000000 000000 000000 @'@'@"@"@'@'@"@'
00000,(J 000000 000000 000000 @'@'@"@"@"@'@'@'
000000 000000 000000 000000 @"@"@"@"@"@'@'@"

A-15 Zilog A-15

ADB Zilog ADB

000000 000000 000000 000000 @'@'@'@'@'@'@'@'

000000 000000 000000 000000 @'@'G~'@'@'@'@'@'

000000 000000 000000 000000 @'@'€l'@'@'@'@'@'
000000 000000 000000 000000 @'@'~~'@'@'@'@'@'

000000 000000 000000 000000 @'@'€l'@'@'@'@'@'
000000 000000 000000 000000 @'@'~~'@'@'@'@'@'

? <b,20/4o4""8t8cna
strl: 052150 064563 020151 071440 This is - strl+%8: 060440 061550 060562 060543 a chaLrac - strl+%10 :: 072145 071040 071564 071151 ter stri - strl+%18:: 067174 000000 - 000001 000710 ngH
lnum: 000000 002322 037640 000000 R? - str2: 052150 064563 020151 071440 This is - str2+%8: 072150 062440 071545 061557 the s;eco - str2+%10: 067144 020143 064141 071141 nd chara - str2+%18:: 061564 062562 020163 072162 ct er str - str2+%20: 064556 0~3400 000000 177662 ing2 - environHi2: 000000 000000 000000 000000

- environ+~;a: 000000 000000 000000 000000 -
environ+~il2: 000000 000000 000000 000000

-environ+¥; la: 000000 000000 000000 000000 -
environ+~;22: 000000 000000 000000 000000 -
environ+~;2a: 000000 000000 000000 000000 -
environ+~;32: 000000 000000 000000 000000

-environ+~;3a: 000000 000000 000000 000000 -
environ+~;42: 000000 000000 000000 000000 -
environ+~;4a: 000000 000000 000000 000000
environ+~; 52:

? <b,10/2b8t""2cn
strl: %e10s4 %0068 Th

%e1069 %0073 is
%e1020 %0069 i
%'21073 %0020 s
%'21061 %0020 a
%01063 %0068 ch
%0i061 %0072 ar
%0061 %0063 ac
%0'074 %0065 te
%0:072 %0020 r

? $q
*** 3168***

A-16 Zilog A-16

.. ·

ADB

adb dir -

ADB: 88000 1.1
? =nt"Inode"t"Name"
? 0,-l?utl4cn

I node
%0000: 2

2
102
101

164
148
197
957
261

? $q

adb /dev/src -

ADB: 88000 1.1
? ?m 0 %1000000 1024

Zilog

Example 12

Name

bin
usr
157 lib
dev
etc
pb.image
tmp
zeus3 1. 2

? 0,-l?"flags 11 8ton 11 links,uid,gid 11 8t3dn 11 size 11 8tDn" \
addr"8t20un"times"Bt2Y2na

%0000: flags 100000
links,uid,gid 0 0 0
size 0
addr '~ 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0

0

times 1981 Feb 12 13:50:17 1981 Feb 12 13:50:17

1981 Feb 12 13:50:17

%0040: flags 040755
links,uid,gid 44 0 0
size 704
addr 3 9984 810 0 0

0 0 0 0 0 0
0 0 0 0 0

times 19Bl Jul 17 16:.58:42 1981
10:10:41

1981 Jul 15 10:10:41

%0080: flags 100664
links,uid,gid 1 25 0
size 34

A-17 Zilog

ADB

0 0
0

0 0
0

Jul 15

A-17

ADB Zilog ADB

addr 52 12288 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0

times 1981 Jul 16 17:06:34 1981 Jul 16 17:04:23

1981 Jul 16 17:94:23

A-18 Zilog A-18

,,.

ADB

Command Summary

Zilog

APPENQIX B
ADB SUMMARY

$ Formatted Printing

?

I

=

?w

/w

?l

Eb-

format

format

format

ex pr

ex pr

ex pr

Breakpoint

:b
:c
:d
:k
:r
:s

print from a.out -- file according to

print from core file according to

print the value of dot

write! expression into a.out file ---
wr i tE~ expression into core file

locate expression in a.out file

and
- --

Program Control

set breakpoint at dot
continue running program
delete breakpoint

format

format

kill the program being debugged
run a.out file under ADB control
single-step

Miscellaneous Printing

B-1

$b
$c
$e
$f
$m
$q
$r
$s
$v
$w

print current breakpoints
stack trace
external variables
floating registers
print ADB segment maps
exit from ADB
general registers
set offset for symbol match
print ADB variables
set output line width

Zilog

~DB

B-1

ADB Zilog

Calling the Shell

call shell to read rest of line

Assignment to Variables

>name assign dot to variable or register name

Format Summary

a the value of dot

b one byte in octal

c one byte as a character

d one word in decimal

f two words in floating point

i Z8000 instruction

0 one word in octal

n print a newline

r print a blank space

s a null terminated character string

nt move to next g space tab

u one word as unsigned integer

x hexadecimal

y date

backup dot

• print string

Expression Summary

~ Expression Components

8-2

decimal integer
octal integer
hexadecimal

for example 256
for example 0277
for example %ff

Zilog

ADB

B-2

ADB

B-3

symbols
variables
registers
(expression)

Dyadic Operators

+ add
- subtract
* multiply
% integer division
& bitwise and
I bitwise or

Zilog ADB

for example flag main main.argc
for example <b
for example <pc <r0
for example expression grouping

I round up to the next multiple

Monadic Operators

- not
* contents of location
- integer negate

Zilog B-3

System 8111 Assembly Language Reference Manual

10/14/83

AS

ii

Zilog

Zilog
10/14/83

AS

ii

AS z i l.og AS

Pref ace

This manual describes the System 8000 assembly language and
serves as the primary reference manual for the System 8000
assembly language programmer.

A brief introduction to the assembler is given in Section 1
followed by four sections that describe the language begin
ning with language structure and ending with program struc
ture.

Section 2 describes: character set, numbers, identfiers,
unary and binary operators and expressions. The basic unit
of an assembly language program, the assembly language
statement, is presented in Section 3 followed by the avail
able addressing modes and operators in Section 4. Section 5
describes how program structure allows logical grouping of
code and relocatability. The appendices contain a summary
of the assembler directives, keywords and special charac
ters, Z8000 instruction mnemonics, assembler error messages
and debugger support directives.

Invocation
described
sld{l)) •

of the assembler and the loader/linker is
in the ZEUS Reference Manual { cas{l), ld{l) and

A detailed description of the instruction set, architecture,
and hardware-related features of the Z8000 can be found in
the publication:

Z8000 CPU Technical Manual, 00-2010

A detailed description of the Z8000 floating point instruc
tion set can be found in the publication:

iii

Floating Point Emulator Package User's Manual, 03-8201

Zilog
10/14/83

iii

AS

iv

Zilog

Zilog
10/14/83

AS

iv

AS Zilog

Table of Contents

SECTION 1 GENERAL INFORMATIO•

1.1.
1. 2.
1. 3.

Assembler Overview •. " .••.•••.•...
Relationship to PLZ/ASM Assembler
Implementation Notes '!••··········

SECTION 2 LANGOAGJ~ STRUCTURE

2.1. Introduction
2.2. Strings ··~···
2.3. Numbers··~··

2.3.1. Integers

' ..
~ . .
' . . .

2.3.2. Floating Point Numbers
2.4. Identifiers·········~·······

2.4.1. Keyword and Local Identifiers
2.5. Constants···········~·············
2.6. Unary and Binary Operators ••••••.••.
2.7. Expressions Assembly Time Arithmetic

2.7.1. Absolute Expressions
2.7.2. Relocatabie Expr~ssions
2.7.3. External Expressions

SECTION 3 ASSEMBLY LANGUAGE STATEMENTS

v

3.1. Introduction········~·······
3.2. Assembly Language Statements
3.3. Labels •••••••..•.••.

3.3.1. Internal Labels
3.3.2. Global Labels
3.3.3. Local Labels

,•
3. 3. 4. External Labels ,• ..
3.3.5. Common Labels

3.4. Operators ••••••...
3.4.1. Assembler Directives
3.4.2. Direct Assignment
3.4.3. Data Declarator
3.4.4. Instructions
3.4.5. Pseudo Instructions

3.5. Operands
3.6. Comments

Zilog
10/14/83

1\S

1-1

1-1
1-1
1-2

2-1

2-1
2-1
2-2
2-2
2-2
2-3
2-3
2-4
2-4
2-5
2-6
2-7
2-8

3-1

3-1
3-1
3-3
3-3
3-4
3-4
3-5
3-5
3-5
3-5
3-6
3-9

3-12
3-12
3-14
3-15

v

AS Zilog AS

SECTION 4 ADDRESSING MODES AND OPERATORS 4-1

4 • 1 .. Int rod uc ti on•••...•.••.......•........
4.2G Addressing Modes ...•..•...•...................

4.2.1. Immediate Data •.....•..........•......•..
4.2.2. Register Address ...•••................•.•
4.2.3. Indirect Register Address•..........
4.2.4. Direct Address ...•......•......••...•....
4.2.5. Indexed Address•..•......••........•.
4.2.6. Relative Address .•.•.........•...........
4.2.7. Based Address ······················~·····
4.2.8. Based Indexed Address··············~·····

4.3. Segmented Addressing Mode Operators
4.4. Addressing Mode Directives··············~·····

4-1
4-1
4-2
4-3
4-4
4-5
4-6
4-8
4-9
4-9

4-10
4-11

SECTION S PROGRAM STRUCTURE • • • • • . . . • 5-1

5.1. Introduction······················~····· .. ··••· 5-1
5.2. ~lodules ...•..•..•.....•..•........ , 5-1
5.3. Sections and Areas 5-1

5.3.1. Program Sections 5-3
5.3.2. Absolute Sections ············~····· .. ·••·· 5-4
5.3.3. Common Sections··············~····· .. ·••·· 5-4

5.4. Local Blocks 5-5
5.5. Location Counter ··················~··········· 5-6

5.Si.l. Location Counter Control 5-6
5.Si.2. Line Number Directive 5-7

APPENDIX A SUMMARY OF ASSEMBLER DIRECTIVES•...•.• A-1

A.l. Introduction A-1

APPENDIX B KEYWORDS AND SPECIAL CHARACTERS ..•........ B-1

APPENDIX C ASSEMBLER ERROR MESSAGES .•.... ,, . . • • . • C-1

APPENDIX D DEBUGGER SUPPORT DIRECTIVES D-1

vi Zilog
HJ/14/83

vi

AS

Table
2-1
2-2
2-3
2-·4

3-1
3-2

Zilog AS

List of Tables

Special Characters Within Strings .••.••..••• 2-1
Floating Point Conversion Operators ••.•••••. 2-2
Unary Operators .•.•••••.•..••.....•..••.•.•. 2-4
Binary Operators in Order of Precedence ••.•. 2-5

Summary of Language Statement Fields .•..•.•• 3-2
Functional Summary of Assembler Directives .. 3-6

4-1 Segmented Addressing Mode Operators .•.••.... 4-11

vii Zilog
HJ/14/83

vii

AS Zilog

SECTION 1
GENERAL INFORMATION

1. 1. Assembler Ove!rview

AS

The System 8000 relocating Z8000 assembler, called cas, runs
on the System 8000 under the ZEUS operating system. It
translates assembly language source programs into object
modules that can be either separately executed by the System
8000, or can be linked with other assembler object modules
to form a complete program.

An editor is used to create an assembly language source
module (file). The source filename should end with the
extension .s. Instructions for invoking the assembler are
contained in cas(l).

The assembler is a two-pass assembler. During the first
pass, the assembler builds the symbol table and creates an
intermediate file t:hat is deleted when the assembly is com
plete. Symbols, which can have a variable length, appear in
the symbol table in the order in which they are defined in
the assembly language program. During the second pass, the
assembler creates at relocatable object module in a.out(S)
format and with the de·fault filename a.out. - --

The relocatability feature of the assembler frees the pro
grammer from memory management concerns during program
development (since object code can be relocated in memory)
and also allows programs to be developed in modules whose
addresses are resolved automatically when the modules are
linked.

1.2. Relationship to PLZ/ASM Assembler

With the 3.1 release of the ZEUS operating system, the Sys
tem 8000 assembler becomes the core assembler for the System
8000. In addition to translating programs written in the
language described in this mariual, the assembler operates as
the back-end processor for the C and other language com
pilers.

The System 8000 assembler coexists with the Z8000 PLZ/ASM
assembler. PLZ/ASM program$, however, cannot be assembled
by the System 8000 assembler nor can System 8000 assembler
programs be assembled by the PLZ/ASM assembler. Hereafter,
the System 8000 assembler will be referred to as simply the

1-1 ziiog
10/14/83

1-1

AS Zilog AS

assembler. Any references to the PLZ/ASM assembler will be
explicit to avoid confusion between the two assemblers.

1. 3. I11aplementa t ion Notes

Any limitations associated with a particular release of the
assembler are noted in the System 8000 ZEUS Reference
Manual, cas(l).

1-2 Zilog
10/14/83

1-2

AS

2.1. Introduction

Zilog

SECT~ON 2
LANGUAGE STRUCTURE

AS

This section describes the basic structure of the assembly
language, encompassing numbers, expressions, and unary and
binary operators.

2. 2. Strings

A string consists of a character sequence enclosed in double
quotes (") or single quotes ('). Consecutive strings are
concatenated. Strings cannot contain an actual newline char
acter. Table 2-1 describes the special characters that can
be used within a string.

Table 2-1 Special Characters Within Strings

Character Definition

\0
\n
\t
\b
\1
\r
\f
\\
\"
\'
\%nn

null
newline
tab
backspace
linefeed
carriage return
formfeed
backslash
double quote
single quote
two hexadecimal digits that form
an arbitrary bit pattern

The following are examples of valid strings:

"This is
"This is
"This is
"This is
"This is
"Here is
"Here is

2-1

a str:ing"
a null terminateo string "
a \" double quote within a
a \' single quote within a
\n Multi-line \nString"
a \t tab, \b backspace, and
a \f f ormfeed \\ backslash

Zilog
10/14/83

string"
sting"

\r carriage
and \%AB hex

return"
%AB"

2-1

AS Zilog AS

2.3. Numbers

Two types of numbers are supported by the assembler:
integers and floating point numbers.

2. 3.1. Integers

Integers can be represented in decimal, hexadecimal, octal
or binary format. The default representation is decimal.
Examples of each representation follow:

5023
%FA2E
%(8)7726
%(2)10011101

decimal
hexadecimal
octal
binary

2.3.2. Floating Point Numbers

A floating point number consists of an integer part, a frac
tional part, and an exponent part. The exponent part is pre
ceded by an "E" or "e". Either the decimal point or the "E"
or "e" must be present to form a floating point number. Only
decimal digits can be used in a floating point number.

3.0
. 023
3.23
3.23E7
4. 5•e6
2E7
2.

Floating point numbers are always preceded by a floating
point conversion operator. These operators, summarized in
Table 2-2, operate only on an integer or floating point
number. They cannot be used in expressions.

~rable 2-2 Floating

Operator

"F Convert
"'FD Convert
"FS Convert

2-2

Point Conversion

Conversion

to floating
to floating
to floating

Zilog
10/14/83

double
double
single

Operators

ex bended

2-2

AS Zilog AS

Examples of both valid and invalid use follow:

VALID

"'F 3.5
"'Fl0
"'FD 7
"'FS 10E 7
"'FD3.5
"F • 23E4

2.4. Identifiers

INVALID

"'F (3+4)
"'FS Ll
2 + "'FD 3.5

An identifier is a nonnumeric character followed by a vari
able number of numeric or nonnumeric characters. In addi
tion to the upper and lower-case letters, a nonnumeric char
acter can be a " " or "?". In addition to decimal digits, a
numeric character can be a ".... Identifiers can be up to
128 characters. Examples of both valid and invalid identif
iers follow:

VALID

My name
count!
Ll
done?

end
label.one

INVALID

2label
2 chickens
.dot

2.4.1. Keyword and Local Identifiers

Two special forms of identifiers are supported by the assem
bler: keyword and local identifiers.

Keyword identifiers are a special
reserved by the assembler as keywords.
the assembler directive, is immediately
assembler as such, because it is always
(" .. ").

kind of identifier
One kind of keyword,

recognized by the
preceded by a period

The remainder of the keyword'
instruction mnemonics, flag
They are listed in Appendix B.

identifier
codes, and

set consists of
condition codes.

Keyword identifiers are recognized in either all upper-case
or all lower-case:

2-3 Zilog
10/14/83

2-3

AS

.SEG

.nonseg
• wo:rd
.byte

LO
ld
INC
.EVEN

Zilog AS

Identifiers become local labels when preceded by a n-n For
more information on local labels, refer to Section 3.

-Ll
-1
-jelly
-pa1~m. 1

2. 5. Cc>nstants

A constant value is one that doesn't change throughout a
program module. Constants can be expressed as strings or as
an identifier representing a constant value. Identifiers
can take the form of internal, local or global labels as
described in Section 3.

2.6. Unary and Binary Operators

To perform assembly-time arithmetic, expressions are formed
using unary and binary operators in conjunction with con
stants and variable names. (Variable names can be used as
part of expressions, but not the variables themselves.) In
order of precedence, the unary operators are listed in Table
2-3; the binary operators are listed in Table 2-4. Unary
operators take precedence over binary operators, but
parentheses can be used to override precedence of evaluation
in an expression.

2-4

Table 2-3 Unary Operators

Operator Function

+ unary plus
unary minus

AB binary coded decimal
AC ones complement
AFS convert to floating single
AFD convert to floating double
AF convert to floating extended
As segment (see Section 4.3)
Ao offset (see Section 4.3)

Zilog
10/14/83

2-4

AS Zilog

Table 2-4 Binary Operators in Order of Precedence

Operator

*

Function

multiply
divide
shift left
shift right
bitwise and
bitwise or
bitwise xor
binary plus
binary minus

AS

2.7. Expressions-·- Assembly Time Arithmetic

Arithmetic is performed in two ways in an assembly language
program. Run-time arithmetic is done while the program is
actually executing and is defined explicitly by an assembly
language instruction:

SUB Rl0, Rl2 //Subtract the contents of register
//12 from the contents of register 10

Assembly-time arithmetic is done by the assembler when the
program is assembled and involves the evaluation of expres
sions in operands, such as the following:

LD R0, #(22/7 + X)

JP Z, LOOPl + 12

ADD R2, #HOLDREG-1

Assembly-time arithmetic is more limited than run-time
arithmetic in such areas as signed versus unsigned arith
metic and the range of values permitted. Only unsigned
arithmetic is allowed in assembly-time expression evalua
tion. Run-time arithmetic uses both signed and unsigned
modes, as determined from the assembly-language instruction
specified and the meaning attached to operands by the pro
grammer.

All assembly-time arithmetic is computed using 32-bit arith
metic, "modulo 4,294,967,296" (2 raised to the thirty-second
power). Values greater than or equal to 4,294,967,296 are
divided by 4,294,967,296 and the remainder of the division
is used as the result. Depending on the number of bits
required by the particular instruction, only the rightmost

2-5 Zilog
10/14/83

2-5

AS Zilog AS

4, 8, 16, or 32 bits of the resulting 32-bit value are used.
If the result of assembly-time arithmetic is to be stored in
four bits, the value is taken "modulo 16' 11 to give a result
in the range 0 to 15. If the result is to be stored in a
single byte location, the value is taken "modulo 256" to
give a result in the range 0 to 255. If the result is to be
stored in a word, the value is taken "modulo 65536" to give
a result in the range 0 to 65535.

LDB RL4, #X+22

JP X+22

ADDL RR12, #320~0*MAX

//Result of (X+22) must be in
//range 0 to 255

//Modulo 65536. Result is the
//address 22 bytes beyond X
//and may wraparound through
//zero

//Result of (32000*MAX) is
//taken modulo 4,294,967,296

All arithmetic expressions have a mode associated with them:
absolute, relocatable and external. In the following dis
cussions, these abbreviations are used:

AB absolute expression
RE relocatable expression
EX external expression

2.7.1. Absolute Expressions

An absolute expression consists of one or more numbers, or
absolute constants combined with unary or binary operators.
The difference between two relocatable expressions is also
considered to be absolute. The relocatable expressions must
be in the same area of the same section. If they are not,
the absolute difference can not be determined at assembly
time. (For more information on program sections and areas,
see Section 5).

An absolute expression is defined as one of the following:

AB --> a number or absolute constant
AB <operator> AB
' + ' AB , ' - ' AB
RE '-' RE

The sesrmented address constructors "<<" and ">>''' can be used
in an absolute expression to form a long value. For exam
ple:

2-6 Zilog
10/14/83

2-6

AS Zilog AS

<<3>>%100

is equivalent to the long value

%03000100

and can be used in any expression where long values can be
used.

Strings can also be used as absolute values. However, only
the first four characters of a string are used to form the
absolute value.

At instruction assembly time, any absolute segmented direct
address that does not have zeroes in the lower byte of the
segment part is flagged as an error. In addition, the high
bit is set for segmented addresses at this time.

Examples of valid absolute expressions (where Ll and L2 are
relocatable labels and cl is a constant identifier) are:

%(8)2767 + (3 -Ar 5)
cl * 6 + %(2)01001100
%FEFEABAB + (Ll - L2)
5 "'< 8
3 + <<2>>%100
4 + "ABCD"

Examples of invalid absolute expressions are:

2 + Ll
(L 1 * 3) - L2
cl + (Ll -3)

2.7.2. Relocatable Expressions

A relocatable expression contains exactly one identifier
subject to relocation after assembly. The expression can be
extended by adding or subtracting an absolute expression.
Plus and minus are the only operators allowed, however.

A relocatable expression can be defined as one of the fol
lowing:

2-7

RE --> a relocatable identifier
RE '+' AB
AB '+' RE
RE '-I A.B
+RE

Zilog
10/14/83

2-7

AS Zilog AS

Exampl1es of valid relocatable expressions (where Ll and L2
are relocatable labels and cl is constant identifier) are:

Ll + cl
Ll + (% (8)077 - %FE02 I 2) "'> 4
cl + (Ll - L2) + L2
Ll - (Ll -L2) + cl

Examples of invalid relocatable expressions are:

cl - Ll
(%203F) - 100 - L2
(Ll - L2) * L2
Ll I L2
Ll + (L2 + cl)

2.7.3. External Expressions

An external expression contains exactly one external iden
tifier, possibly extended by adding or subtracting an abso
lute expression. An external identifier is one that is used
in the current module but defined in another module. The
value of an external identifier is not known until the
modules are linked.

An external expression is defined as one of the following:

EX --> external identifier
EX '+' AB
AB '+' EX
EX '-' AB
+EX

Examples of valid external expressions (where Ll is a relo
catable label, cl is a constant identifier, and el is an
external label) are:

2-8

el - cl
el - (Ll - L2) + 5
cl + el
(%304 - 5) +el
%(2)01100111 * 2 +el

Zilog
10/14/83

2-8

AS Zilog

Examples of invalid external expression are:

2-9

el + {Ll - el)
%FEFE - el
cl * 2 + el - l~l
2 * el
el "'> 8

Zilog
10/14/83

AS

2-9

AS Zilog AS

SECTION 3
ASSEMBLY LANGUAGE STATEMENTS

3.1. Introduction

This section describes the fields and syntax of the assembly
language statement. The conventions used in describing the
syntax are as follows:

$ Parameters shown within angle brackets represent items
to be replaced by actual data or names: <section name>

Optional items are enclosed in parentheses:
sion>)

(<ex pres-

Parameters separated by a "I" indicate that one or 'the
other parameter can be used but not both.

Possible repetition of an item is indicated by append
ing a "+" (to signify one or more repetitions) or an
"*" (to signify zero or more repetitions) to the item:
(<expression>)* Each repetition after the first must be
preceded by a comma.

Other special cha~acters shown in statement and command
formats such as :=, (), will be enclosed in single
quotes and must be written as shown.

The special symbol ":="means "is defined as" or "is
assigned". Any label assigned a value using this con
struct cannot be redefined later.

3. 2. Assembly Laniguage Statements

Assembly language programs consist of assembly language
statements, which can have up to four fields:

Label field

Operator field
the statement.

symbolically defines a location in a program.

specifies the action to be performed by

Operand field -- contains the data or the address of the
data to be operated upon.

Comment field -- contains a comment to document the action
of the statement.

3-1 Zilog
10/14/83

3-1

AS Zilog AS

Table 3-1 summarizes these fields which are described in
detail in the remainder of this section.

Each field must be separated from the other fields by one or
more delimiters. A delimiter can be one of the following:

space
tab
semicolon

A comma is required to separate components in the operands
field.

Each assembly language statement is terminated by the new
line or carriage return character. When a statement's
length exceeds the line length, it can be continued on the
next line by using the line continuation character "\".

A sample assembly language statement follows:

Label

Ll:

3-2

Operator Operand (s)

LO R0, Rl

Comment

//Load the contents of
//Register 0 in Register 1.

Table 3-1 Summary of Language Statement Fields

Field

Label

Operator

Operands

Comment

Field Types

Internal
Global
Local
External
Common

Directive
Direct Assignment
Data Declarato:r
Instruction

Address
Data
Condition Code

Zilog
10/14/83

3-2

AS Zilog AS

Note that the order of fields ,shown in the example is not
required. While comments are always the last field in a
statement (when the!y are used), labels do not necessarily
precede operators. When the operator is a directive, for
example, a label can follow:

.extern Ll

3.3. Labels

A label identifies a statement in a program allowing that
statement to be referenced symbolically. Constants, instruc
tions, directives, and data declarators can all be labeled.
Any statement referenced by another statement must be
labeled. There can be more than one label per statement.
The following label types fit this description:

internal
global
local

Two additional label types, external and common, are defined
with the assemble~r directives, .extern and .comm respec
tively. They are distinguished by the fact that they can be
referenced in the current m6dule (file) but are defined as
global in another module.

external
common

3.3.1. Internal Labels

An internal label consists of ,an identifier followed by a
":''. An internal label restricts access to the identifier
to the module in which it is defined.

3-3

start: LD R0,Rl

count 1: .word %200

//an internal label for an
//instruction

//an internel label for a
//data declaration.

begin: .psec mysection //an internal label for an
//assembler directive

Zilog
10/14/83

3-3

AS Zilog AS

3.3.2. Global Labels

A global label consists of an identfier followed by"::" It
allows the identifier to be accessed from modules other than
the one where it is defined.

Ll::L2::.word %ABCD

Ll: :
L2:: .word %ABCD

done?:: PUSH @RlS, R0

start:::.psec

fooba:r::::= %20

//two global labels for
//a data declaration

//same as preceding example

//a global label for an
//instruction

//a global label for a directive

//a global constant with
//value %20

A label by itself on a line is considered a null statement.
Such a statement is associated with the next non-null state
ment in the program.

start::

begin:: .code

3.3.3. Local Labels

//null statement consisting
//of a label only

//mark beginning of code area

A local la.bel consists of an identifier precE~ded by a n-n

(making the identifier a local symbol) and foll.owed by a
":". (Local labels are valid only within local blocks as
described in Section 5, Program Structure.)

num:= %100

-count:.odd

3-4

//two local labels for
//an instruction

//a local constant with
//value 100 (hex)

//a local label for a directive

Zilog
10/14/83

3-4

AS Zilog AS

3.3.4. External Labels

External specifies that a label can be referenced in the
current module but is defined as global in another module.
External labels are defined with the external directive,
• ex tern.

.extern procl, done?

.extern datum, end

3. 3. 5. Common LabE~ls

//external labels are declared

Common labels consist of the .comm directive followed by a
constant expression that indicates the number of bytes of
storage associated with the common symbol(s) and a comma.
These are followed by a list of identifiers separated by
commas. At link time, common symbols with the same name but
from different files are inspected. The common label with
the largest size is allocated as uninitialized data (BSS
storage). If a global definition with the same name is
found, all common labels refer to the global definition.

. comm 2 0, datal, data2

.comm 5+3, myname,

3.4. Operators

//two common symbols of size 20

//common symbol of size 8

The operator field specifies the action to be performed by
the statement. This field can contain one of the following:

directive
direct assignment
data declaratoi~
instruction

3.4.1. Assembler Directives

An assembler directive either directs the operation of the
assembler or allocates storage but does not itself result in
executable code. 1~ period, ".", precedes every assembler
directive. Table 3-2 gives a functional summary of the
directives and a reference to the section containing a
description of the directive and examples of its use.

3-5 Zilog
10/14/83

3-5

AS Zilog

Table 3-2 Functional Summary of Assembler Directives

Category

Data Storage
and Initialization
Directives

Label Control
Directives

Se!gment Control
Directives

Pz·ogram Section
Directives

Location Counter
Control
Directives

Li.sting Directive

3.4.2. Direct Assignment

Directives

.byte

.word

.long

.quad

.extend

.addr

.bl kb
~blkw
.bl kl

.comm

.extern

.seg

.nonseg

.psec

.csec

.a sec

.data

.bss

.code

.even

.odd

.line

See

Section 3

Section 4

Section ~>

AS

A direct assignment statement allows symbols to bE~ associ
ated with constants, labels, or keywords. Specifically, a
direct assignment statement is a symbol (usually a label)
followed by a "=" and one of the following:

3-6

12-bit absolute constant
32, 64, or 80 bit floating point constant
Relocatable expression
Location Counter
Keyword (for keyword redefinition)

Zilog
10/14/83

3-6

AS Zilog AS

32-Bit Absolute Constants

A internal, global, or local label can be assigned the value
of a 32-bit constant expression.

cl:= 20

c3::= 2+3*5

-c4:=Ll-L2

c5:= <<4>>%1020

Floating Point Constants

//internal label cl is assigned the
//constant value 20.

//global label c3 is assigned the
//the constant value 17.

//local label -c4 is assigned the
//absolute difference between
//label Ll and L2

//internal label cS is assigned the
//long value %04001020

An internal or local label (but not a global label) can be
assigned the value of a 32, 64, or 80-bit floating point
constant. The floating point constant can be a constant
expression or floating point number preceded by a floating
point type conversion unary operator as described in Section
2. Floating point constants can only replace floating point
numbers.

glbl:= AFS 3.5

-1oc2:= AFD 2.23E7

3-7

//internal label L3 is assigned
//the extended floating point
//representation of 3.

//internal label glbl is assigned
//the single floating point
//representation of 3.5.

//local label -1oc2 is assigned
//the double floating point
//representation of 2.23E7.

Zilog
10/14/83

3-7

AS Zilog AS

Relocatable Expressions and Symbols

An internal, global, or local label can be assigned the
value of a relocatable expression.

cl:= .+2

g3::= L47-%30

-dum:= 60+start

//internal label cl is assigned
//the value of the current
//location counter plus 2.

//global label g3 is assigned
//the address of label L47-%30.

//local label -aum is assigned
//the value 60 plus the address
//of label start.

NOTE

If a:;sembled in segmented mode, ". ", "L47", and
"sta1~t" are full segmented addresses.

Location Counter Control

The 1 oc at :lo n counter s ymb o 1 " • " can be ass i g n ed th 1e v a 1 ue of
a constant expression, a relocatable expression, or a loca
tion counter relative expression.

.=.+10

.• =20

.=.-(3+5)

• = L2 + 10

3-8

//the location counter
//by 10

//the location counter
//the value 20

//the location counter
//by 8

//the location counter
//10 bytes beyond the

Zilog
10/14/83

is increased

is assigned

is decreased

is set to
s:fmbol L2

3-8

AS Zilog AS

Keyword Redef ini ti cm

A local or internal label, but not a global label, can be
associated with a keyword for purposes of keyword redefini
tion. Keyword redefinition gives the label all the attri
butes of the keyword being assigned to it.

location:= •

sdefault:= .psec

-wval:= .word

""pl: =R0

3.4.3. Data Declarator

//the internal label location
//is synonymous with "."

//the internal label sdefault
//is synonymous with .psec

//the local label -wval is
//synonymous with .word

//the local label ""pl is
//now synonymous with the
//register R0

A data declaration statement allocates and initializes
storage. Such a statement consists of a data declaration
directive preceded by a label (optional) and followed by a
series of constant and· relocatable expressions.

The nine data declaration directives are:

3-9

.byte

.word

.long

.quad

.extend

.addr

.bl kb

.bl kw

.bl kl

Zilog
10/14/83

3-9

AS Zilog AS

.byte (<number> '('<expression>')'l<expression>f '"'string'"')*

Allocates storage and initializes it with the specified byte
value(s) which can be a series of constant and relocatable
expressions or an ascii string. Number is the repetition
factor. When a number is specified, the expression must be
enclosed in parentheses; strings are enclosed in double
quotes:

name:.byte "Babe Ruth"

pl ace: .. byte "Anytown "\
"USA"

L4: : . byte 3, "j oe"

//allocates storage for asc11
//representation of named string

//Continues a long string onto
//the next 1 ine

//allocates four bytes with initial
//value three and ascii string joe

.word (<nwmber> '('<expression>'>'f<expression>)*

Allocates storage and initializes it with the specified word
value(s) which can be a series of constant and relocatable
expressions. Number is the repetition factor. When a number
is specified, the expression must be enclosed in
parentheses.

count: .. word %20

L2:.word 20, 3+5, 5

//allocates a word with initial
//value %20

//allocates three words with initial
//values 20,8, and 5

• long (<nwmber> ' ('<expression>') ' I <expression>)*

Allocates storage and initializes it with the specified long
value(s) which can be a series of constant and relocatable
expressions. Number is the repetition factor. When a number
is specified, expression must be enclosed in parentheses.

.long 10 (%ABCDABCD)

3-10

//allocates 10 long values
//with initial value %ABCDABCD

Zilog
10/14/83

3-10

AS Zilog AS

.quad (<number> '('<expression>'>'l<expression>)*

Reserves 64 bits of storage. Only double precision floating
point numbers fill the allocated storage completely. If the
value does not fill the allocated storage completely, no
sign extension is performed. Number is the repetition fac
tor. When a number is specified, the expression must be
enclosed in parentheses.

.quad %FFFFFFFF

.quad AFS3.5

.quad AFD3.4

//initializes the lower 32 bits
//of the quad with %FFFFFFFF

//initializes the lower 32 bits
//of the quad with the floating
//point value 3.5

//initializes entire quad with
//double floating point number 3.4

.extend (<number> "('<expression>')' !<expression>)*

Allocates 80 bits of storage. Only extended precision
floating point numbers fill the allocated storage com
pletely. If the value does not fill the allocated storage
completely, no sign extension is performed. Number is the
repetition factor. ·when a number is specified, the expres
sion must be enclosed in parentheses •

• extend 10 (AF1.234E5) //allocates 10 extended floating
//point numbers with the value
//l.234E5

.addr (<number> '('<expression>'>'l<expression>)*

When assembling in non-segmented mode, allocates storage and
initializes it with the specified 16-bit value which can be
a series of constant and relocatable expressions. Number is
a repetition facto1~. When a number is used, expression must
be enclosed in parentheses.

When assembling in segmented mode, allocates storage and
initializes it with a 32-bit value.

.addr L2

3-11

//allocates two (non-segmented) or
//four (segmented} bytes for
//address L2

Zilog
10/14/83

3-11

AS Zilog AS

.blkb <expression>

Allocates storage in bytes. The number of bytes is speci
fied by the expression. No initialization occurs .

• blkb 20 //allocates storage for 20 bytes

.blkw <expression>

Allocates storage in words. The number of words is speci
fied by the expression. No initialization occurs.

.blkw (3+5) //allocates storage for 8 words

.blkl <expression>

Allocates storage in long words.
is specified by the exprassion.

The number of long words
No initialization occurs.

cl:= 20
.blkl (2*cl)

//defines constant
//allocates storage
//for 40 long words

Commas are required in initializer lists; consider this data
declarator:

.byte 2 -3

It has one value, 2-3. If two values are to be initialized,
use a comma:

.byte 2, -3

3.4.4. Instructions

An instruction is the assembly language mnemonic describing
a specific action to be taken. Instructions comprising the
Z8000 instruction set are described in the Z8000 CPU Techni
cal Manual. The floating point instruction set iS-described
in the Floating Point Emulator Package User'.§~ Manual.

3.4.5. Pseudo Instructions

The majority of code in the assembly language program will
normally be assembler directives, data declarators, direct
assignment statements, the assembly language instructions

3-12 Zilog
10/14/83

3-12

AS Zilog AS

described in the _Z8000 CPU T@chnical Manual, and the float
ing point instructions described in the Floating Point Emu
lator Package User'~ Manual.

The System 8000 is capable of performing jump and call
optimization. When the assembler encounters the pseudo jump
and call instructions (JPR and CALLR), it determines the
range of the jump or call and produces the relative (short)
form of the instruction (JR or CALR) wherever possible. If
it cannot produce the ielative form of the instruction, it
produces the absolute (long) form of the instruction (JP or
CALL).

Jump Optimization

Jump optimization is explicitly provided to the programmer
via a JPR control instruction. with the following form:

JPR [cc] ',' <jpr ex pr>

where:
cc is any condition code that can be used with a JP or
JR instruction

<jpr_expr> => <label> [('+'I '-') <const_expr>]

where:
<label> is an internal, global, or local label.
<const_expr> is a constant expression

A JPR (<jpr expr>) expression is a relocatable expression
containing -exactly one relocatable value (<label>). The
destination of a JPR must be a program label with an
optional constant added to or subtracted from it. However,
one particular fo~ITT of <label> + <const expr> cannot be
optimized. This form is best explained by the following
example:

Ll: JPR L2-300

L3: JPR L99

L2:

If L2-Ll is less than 300 bytes, the JPR at Ll is actually a
backward jump. The destination ·actually becomes further

3-13 Zilog
10/14/83

3-13

AS Zilog AS

away if the JPR at L3 is optimized. This case is very
expensive to handle and is rare enough not to be optimized.

Certain JPR and CALLR instructions cannot be optimized to a
short (relative) instruction. The following types of state
ments cannot be optimized:

1. A JPR or CALLR instruction whose target is not in the
same section.

2. A JPR or CALLR instruction whose target is not in the
same module (external).

During the course of assembly, it is possible to encounter a
statement that cannot be assembled unless jump optimization
has occured. If jump optimization is performed before the
target label for a particular jump is found, the jump is
made long. The following conditions cause jump optimization
to occur before the end of the first pass of the assembler.

1. Location counter direct assignment (as in .=.+20)

2. A constant expression that contains the difference
between two relocatable values (for example, Ll-L2)
when there is an optimizable jump between the two relo
catable values.

Call Optimization

The assembler also provides call optimization via a CALLR
control instruction that will produce a relative call when
~ver possible. The call control instruction has the follow
ing form:

CALLR <jpr_expr>

where <jpr expr> is a simple, relocatable expression, as
described ~reviously.

Calls are optimized under the same conditions that cause
jump optimization.

3.5. Oper.ands

Operands supply the information an instruction needs to
carry out its action. Depending on the instruction speci
fied, this field can have zero or more operands. An operand
can be:

3-14 Zilog
10/14/83

3-14

AS Zilog AS

$ Data to be processed (immediate data).

$ The address of a location from which data is to be
taken (source address).

The address of a location where data is to be put (des
tination address) •

The address of' a program location to which program con
trol is to be passed.

A condition code, used to direct the flow of program
control.

Although there are a number of valid combinations of
operands, there is one basic convention to remember: the
destination operand always precedes the source operand.
Refer to the specific instructions in the Z8000 CPU Techni
cal Manual for valid operand combinations.

With the exception of immediate data and condition codes
·(described in the· Z8000 ~ Technical Manual and Floating
~oint Evaluator Package User'~ Manual), all operands are
expressed as addresses: register, memory, and I/O addresses.
For example, an ope~rand may name a register whose contents
are added to the contents of another register to form the
address of the memory location containing the source data
(based indexed addressing) .

Addressing modes and operators are the subject of Section 4.

3.6. Comments

Comments are used to document program code as a guide to
program logic and also to simplify present or future program
debugging. Two types of comments are available: the end
of-line comment and the multi~line comment. The end-of-line
comment begins with the characters "//" and ends at the next
carriage return.

LD R0, Rl //This is an end-of-line comment

The multi-line comment begins with the characters "/*", ends
with the characters "*/" and spans one or more lines in
between.

LD R0, Rl

3-15

/* This is an example of a
** multi-line comment
*/

Zilog
10/14/83

3-15

AS Zilog AS

SECTION 4
ADDJRESS ING MODES AND OPERATORS

4.1. Introduction

This section describes the System 8000 addressing modes and
operators and contains examples of assembler instructions
that use them.

4. 2. Addressing M•odes

Data can be specified by eight disti~ct addressing modes:

• Immediate Data
• Register
• Indirect Register
• Direct Address
• Indexed Address
• Relative Address
• Based Addre:ss
• Based Index 1ed Address

Special characters are used in operands to identify certain
of these address mode~. The characters are:

• "R" preceding a word register number;

• "RH" or "RL" preceding a byte register number;

• "RR" precedin9 a register pair number;

• "RQ" precedin9 a register quadruple number;

• "@" preceding an indirect-register reference;

• "#" preceding immediate data;

o "()"used to enclose the displacement part of an
indexed, based, or based indexed address;

o "." signifyinq the current program counter location,
usually used in relative addressing.

The use of these characters is described in the following
sections.

4-1. Zilog
10/14/83

4-1

AS Zilog AS

Not every address mode can be used by every instruction.
The individual instruction descriptions in the Z8000 CPU
Technical Manual tell which address modes can be used for
each instruction.

4. 2 .1. I10mediate Data

Although considered an addressing mode for purposes of this
discussion, Immediate Data is the only mode that does not
indicate a register or memory address.

The operand value used by the instruction in Immediate Data
addressing mode is the value supplied in the operand field
itself.

Immediate data is preceded by the special characte:c "#" and
can be either a constant expression (including character
constants and symbols representing constants) or a relocat
able exp1~ession. Immediate data expressions are evaluated
using 32-bit arithmetic. Depending on the instruction being
used, the value represented by the rightmost 4, 8, 16, or 32
bits is actually used. An error message is generated for
values that overflow the valid range for the instruction.

LDB RH0, #100 //Load decimal 100 into bytE~
II register RH0

LDL RR0, #%8000 * REP COUNT
//Load the value resulting :from
//the multiplication of hexadecimal
118000 and the value of constant
II REP_COUNT into register pair RR0

If a variable name or address expression is prefixed by "#",
the value used is the address represented by the variable or
the result of the expression evaluation, not the contents of
the corresponding data location. In non-segmented mode, all
address expressions result in a 16-bit value.

For segmented addresses, the assembler automatically creates
the prope~r format for a long offset address which includes
the segment number and the long offset in a 32-bit value. It
is recommended that symbolic names be used whereve1: possible
since the corresponding segment number and offset for the
symbolic name will be managed automatically by the assembler
and can be assigned values later when the module is linked
or loaded for execution.

4-2 Zilog
10114183

4-2

AS Zilog AS

For those cases whe,re a specific segment is desired, the
following notation can be used (the segment designator is
enclosed in double angle brackets):

<<segment>>offset

where "segment" is a constant expression that evaluates to a
7-bit value, and "offset" is a constant expression that
evaluates to a 16-bit value. This notation is expanded into
a long offset address by the assembler.

4. 2. 2. Register A<lldress

In Register addressing mode, the operand value is
tent of the specified general-purpose register.
four different sizes of registers on the Z8000:

• Word register (16 bits),

• Byte register (8 bits),

• Register pair (32 bits), and

• Register quadruple (64 bits).

the con
There are

A word register is indicated by an "R" followed by a number
from 0 to 15 (decimal) corre$ponding to the 16 registers of
the machine. Either the high or low byte of the first eight
registers can be accessed by using the byte register con
structs "RH" or "RL" followed by a number from 0 to 7. Any
pair of word registers can be accessed as a register pair by
using "RR" followed by an even number between 0 and 14.
Register quadruples are equivalent to four consecutive word
registers and are accessed by the notation "RQ" followed by
one of the numbers 0, 4, 8, or 12.

If an odd register number is given with a register pair
designator, or a number other than 0~ 4, 8, or 12 is given
for a register quadruple, an assembly error will result.

In general, the size of a register used in an operation
depends on the particular i~struction. Byte instructions,
which end with the suffix "B".are used with byte registers.
Word registers are used with word instructions, which have
no special suffix. Register pairs are used with long word
instructions, which end with.the suffix "L". Register qua
druples are used only with three instructions (DIVL, EXTSL
and MULTL) which use a 64-bit value. An assembly error will
occur if the size of a register does not correspond
correctly with the particular instruction.

4-3 Zilog
10/14/83

4-3

AS

LD RS, #%3FFF

LDB RH3, #%F3

ADDL RR2, RR4

MULTL RQ8 I RR 12

Zilog

//Load register 5 with the
//hexadecimal value 3FFF

//Load the high order byte of
//word register 3 with the
//hexadecimal value F3

AS

//Add the register pairs 2-3 and
//4-5 and store the result in 2-3

//Multiply the value in register
//pair 10-11 (low order 32 bits of
//register quadruple 8-9-10-11) by
//the value in registe~ pair 12-13
//and store the result in register
//quadruple 8-9-10-11

4.2.3. Indirect Register Address

In Indirect Register addressing mode, the operand value is
the conbent of the location whose address is contained in
the specified register. A word register is used to hold the
address in non-segmented mode, whereas a register pair must
be used in segmented mode. Any general-purpose word regis
ter (or register pair in segmented mode) can be used except
R0 or RR0.

Indirect Register addressing mode is also used with the I/O
instructions and always indicates a 16-bit I/O address. Any
general-purpose word register can be used except R0.

An IndireGt Register address is specified by a "commercial
at" symbol (@) followed by either a word register or a
register pair designator. For Indirect Register addressing
mode, a word register is specified by an "R" followed by a
number from 1 to 15, and a register pair is specified by a
"RR" followed by an even number from 2 to 14.

JP @R2

LD @R3, R2

4-4

//Pass control (jump) to the
//program memory location
//addressed by register 2
//(non-segmented mode)

//Load contents of register
//2 into location addressed by
//register 3 (non-segmented mode)

Zilog
10/14/83

4-4

AS

LO

state2: CALL @R3

4. 2. 4. Direct Addi:ess

Zilog AS

//Load immediate decimal value 30
//into location addressed by regis
//ter pair 2-3 (segmented mode)

//Call indirect through register 3
//(non-segmented mode)

The operand value used by the instruction in Direct address
ing mode is the content of the location specified by the
address in the instruction. A direct address can be speci
fied as a symbolic name of a memory or I/O location, or an
expression that evaluates to an address. For non-segmented
mode and for all I/O addresses, the address is a 16-bit
value. In segmentE~d mode, the memory address is either a
16-bit value (short offset) or a 32-bit value (long offset).
All assembly-time address expressions are evaluated using
32-bit arithmetic, with only the rightmost 16 bits of the
result used for non-segmented addresses.

LO Rl0, datum

LO struct+8, Rl0

JP C, %2F00

INB RH0, 77

L2:: INC count, #2

//Load the contents of the
//location addressed by datum
//into register 10

//Load the contents of register
//10 into the location addressed
//by adding 8 to struct

//Jump to location %2F00 if the
//carry flag is set (non-segmented
//mode)

//Input the contents of the I/O
//location addressed by decimal
//77 into RH0

//Increment instruction with
//direct address "count" and
//immediate value 2

For segmented addresses, the assembler automatically creates
the proper format which includes the segment number and the
offset. It is recommended that symbolic names be used wher
ever possible, since the corresponding segment number and
offset for the symbolic name will be automatically managed
by the assembler and can be assigned values later when the
module is linked or loaded for execution.

4-5 Zilog
10/14/83

4-5

AS Zilog AS

For those cases where a specific segment is desired, the
following notation can be used (the segment designator is
enclosed in double angle brackets):

<<segment>>offset

where "segment" is a constant expression that evaluates to a
7-bit value, and "offset" is a constant expression that
evaluates to a 16-bit value. This notation is expanded into
a long offset address by the assembler.

To force a short offset address, a short offset operator is
available which can be used with a direct address in seg
mented mode only. The short offset operator is a pair of
vertical bars "I" which surround the address. For a valid
address, the offset must be in the range 0 to 255; the final
address includes the segment number and the short offset in
a 16-bit value.

NOTE

Since short offset addresses can be relocatable,
they are checked for validity at link time.

Examples of the short offset address operator:

.seg
Ll:. word

.code

L2:

%ABAB

LD R0, I Ll I
CP R0, %00
JP EQ, IL2+ 101

ADD R0, R2
RET

4.2.5. Indexed Address

//enter segmented mode
//declare data

//enter code area
//load register 0 from
//short address Ll
//compare with %0D
//jump to short address
//L2 + 10
//add R0 to R2
//return

An Indexed address consists of a memory address displaced by
the contents of a designated word register (the index).
This displacement is added to the memory address and the
resulting address points to the location whose contents are
used by the instruction. In non-segmented mode, the memory
address is specified as an expression that evaluates to a
16-bit value. In segmented mode, the memory address is

4-6 Zilog
10/14/83

4-6

AS Zilog AS

specified as an expression that evaluates to either a 16-bit
value (short offset format) or a 32-bit value (long offset
format). All assembly-time address expressions are
evaluated using 32-bit arithmetic, with only the rightmost
16 bits of the result used for non-segmented addresses.
This address is followed by the index, a word register
designator enclosed in parentheses. For Indexed addressing,
a word register is specified by an "R" followed by a number
from 1 to 15. Any general-purpose word register can be used
except R0.

LO Rl0, table(R3)

LO 240+38(R3) v R10

ADD R2, tab(R4)1

//Load the contents of the
//location addressed by table
//plus the contents of reg
//ister 3 into register 10

//Load the contents of reg
//ister 10 into the location
//addressed by 278 plus the
//contents of register 3
//(non-segmented mode)

//Load register 2 with
//contents of register 2
//added to contents of the
//address "tab" indexed
//by the value in register 4

For segmented addresses, the assembler automatically creates
the proper format for the memory address, which includes the
segment number and the offset, As with Direct addressing,
symbolic names should be used wherever possible so that
values can be assi9ned later when the module is linked or
loaded for execution.

For those cases whE~re a specific segment is desired, the
following notation can be used (the segment designator is
enclosed in double angle brackets):

<<segment>>offset

where "segment" is a constant expression that evaluates to a
7-bit value, and "offset" is a constant expression that
evaluates to a 16-bit value. This notation is expanded into
a long offset address by the assembler.

4-7 Zilog
10/14/83

4-7

AS Zilog AS

4. 2. 6. :Relative Address

Relative address mode is implied by its instruction. It is
used by the Call Relative (CALR), Decrement and .Jump If Not
Zero (OJNZ), Jump Relative (JR), Load Address Relative
(LOAR), and Load Relative (LOR) instructions and is the only
mode available to these instructions. The operand, in this
case, represents a displacement that is added to the con
tents of the program counter to form the destination address
that is relative to the current instruction. The original
content of the program counter is taken to be the address of
the instruction byte following the instruction. The size
and range of the displacement depends on the particular
instruction, and is described with each instruction in the
Z8000 CPU Technical Manual.

The displacement value can be expressed in two ways. In the
first case, the programmer provides a specific displacement
in the form ".+n" where n is a constant expression in the
range appropriate for the particular in:struct:ion and ". 11

represents the contents of the program counter at the start
of the instruction. The assembler automatically subtracts
the size of the relative instruction from the constant
expression to derive the displacement.

JR OV, • +K

JR • +4

//Add value of constant K to program
//counter and jump to nE~W location if
//overflow has occurred!

//Jump relative to program counter
//plus 4

II II .

In the second method, the assembler calculates the displace
ment automatically. The programmer simply specifies an
expression that evaluates to a number or a program label as
in Direct Addressing. The address specifie!d by the operand
must be in the valid range for the instruction, and the
assembler automatically subtracts the value of the address
of the following instruction to derive the actual displace
ment.

DJNZ RS, loop

LDR Rl0, data

4-8

//Decrement register 5 and jump to
//loop if the result is not zero

//Load the contents of the location
//addressed by data into register 10

Zilog
10/14/83

4-8

AS Zilog AS

4. 2. 7. Based AddrE!SS

A based addre~s consists of a register that contains the
base and a 16-bit displacement. The displacement is added
to the base and thE~ resulting address indicates the location
whose contents are used by the instruction.

In non-segmented mode, the based address is held in a word
register that is specified by an "R" followed by a number
from 1 to 15. Any general-purpose word register can be used
except R0. The displacement is specified as an expression
that evaluates to a 16-bit value, preceded by a "#" symbol
and enclosed in parentheses.

In segmented mode, the segmented based address is held in a
register pair that is speci.fied by an "RR" followed by an
even number from 2 to 14. Any general-purpose register pair
can be used except RR0. The displacement is specified as an
expression that evaluates to a 16-bit value, preceded by a
"#" symbol and enclosed in parentheses.

LDL RR2, Rl(~~255)

LD RR4 (#%40(rn),. R2

LD R0, R2(#HJ)

//Load into register pair 2-3 the
//long word value found in the
//location resulting from adding
//255 to the address in register
//1 (non-segmented mode)

//Load register 2 into the loca
//tion addressed by adding %4000
//to the segmented address found
//in register pair 4-5
II (segmented mode)

//Load register 0 from 10 bytes
//past the base address in
//register 2 (non-segmented mode)

4. 2. 8. Based Inde~ited Address

Based Indexed addressing is similar to Based addressing
except that the displacement (index) as well as the base is
held in a register. The contents of the registers are added
together to determine the address used in the instruction.

In non-segmented mode, the based address is held in a word
register that is specified by an "R" followed by a number
from 1 to 15. The index is held in a word register speci
fied in a similar manner and enclosed in parentheses. Any
general-purpose word registers can be used for either the
base or index except R0.

4-9 Zilog
10/14/83

4-9

AS Zilog AS

In segmented mode, the segmented based address is held in a
register pair that is specified by an "RR" followed by an
even number from 2 to 14. Any general-purpose register pair
can be used except RR0. The index is held in a word regis
ter that is specified by an "R" followed by a number from 1
to 15e Any general-purpose word register can be used except
R0.

LO R3, R8(Rl5)

LDB RR14 (R4), RH2

init: LO R0, R2(R4)

//Load the value at the location
//addressed by adding the address
//in R8 to the displacement in
//Rl5 into register 3 (nonseg
//mented mode)

//Load register RH2 into the
//location addressed by the
//segmented address in RR14
//indexed by the value in R4
//(segmented mode)

//Load into register 0
//the base address
//in register 2 indexed
//by the value in register 4
//(non-segmented mode)

4.3. Segmented Addressing Mode Operators

Two special operators, summarized in Table 4-1, ease the
manipulation of segmented addresses. While addresses can be
treated as a single value with a symbolic name assigned by
the programmer, occasionally it is useful to determine the
segment number or offset associated with a symbolic name.

The ""'S" unary operator is applied to an address expression
that contains a symbolic name associated with an address,
and returns a 16-bit value. This value is the 7-bit segment
number associated with the expression and a one bit in the
most significant bit of the high-order byte, and all zero
bits in the low-order byte.

The ""'S" operator can be used in segmented mode only.

The ""'O" unary operator is applied to an address expression
and returns a 16-bit value that is the offset value associ
ated with the expression.

4-10 Zilog
10/14/83

4-10

AS Zilog AS

The offset operator can be used in either segmented or non
segmented mode, but has no effect in non-segmented mode.

Because of
to,rs, no

the special properties
other operators can be
a segment or offset
can be used within

of these address opera
appl ied to a subexpression
operator, although other
the subexpression to which

c·onta in ing
operators
either is applied.

.seg
Ll:.word %ABCD

.code
LD R4,, #"'S Ll
LD RS,, #"'0 Ll
LD R3,, @RR4

.nonseg
L2:.word %BBCC

.code
LD RS,, #"'0 Ll
LD RS,, #Ll

//segmented mode
//declare data

//enter the code area
//load the segment value
//load the offset value
//load indirect through RR4
//non-segmented mode
//declare data

//enter the code area
//offset operator has
//no effect; the first
//instruction is
//equivalent to second
//instruction

Table 4-1 Segmented Addressing Mode Operators

Operator Function

"'s Access segment portion of address

"'o Access offset portion of address

4. 4. Addressing Mc>de Directives

Two directives allow the programmer to determine whether the·
assembly process takes place in segmented or non-segmented
mode •

. • seg

Directs the assembler to begin assembling in segmented mode.
By default, the assembler assembles in non-segmented mode.
Any program that contains a .seg directive is assumed to be
a segmented program.

4-11 Zilog
10/14/83

4-11

AS Zilog AS

.nonseg

Directs the assembler to return to assembling in non
segmented mode.

4-12 Zilog
10/14/83

4-12

AS

5.1. Introduction

Zilog

SECTIONS
PROGRAM STRUCTURE

AS

The structuring of programs and the concept of relocatabil
ity are the subject of Section 5.

5.2. Modules

An assembly language program consists of one or more
separately-coded and assembled modules (also referred to as
files.) These modules are combined into an executable pro
gram using the module linkage and relocation facilities of
the operating system.

Modules are made up of assembly language statements that
define data or perform some action, as described in Section
3.

The assembler produces relocatable object modules. This
relocatability feature of the assembler frees the programmer
from memory managE~ment concerns during program development.
Relocatability is supported by several directives, discussed
below, that determine where data and action statements are
loaded into memory.

5. 3. Sections ancl Areas

In addition to the logical structuring provided by modules,
it is possible to divide a program into sections which can
be mapped into various areas of memory when the module is
linked or loaded for execution. For example, the programmer
may choose to group a set of data structures and statements
that manipulate them together in the same module. But it
may also be desirable to physically separate the object code
for the statements from the data in a system where read-only
memory is used fo1: the statements and read/write memory is
used for the data.

Each section might be allocated to a different address
space. In segmented mode, each section might be mapped into
a different segment, or several sections from different
modules might be combined into the same segment. A single
module may contain several sections, each of which will be
allocated a different area in memory. Alternatively, the

5-1 Zilog
10/14/83

5-1

AS Zilog AS

portions of a single section may be spread through several
modules and the portions automatically combined into a sin
gle area by the linker.

There is a one-to-one mapping between sections and segments
in segmented mode. In non-segmented mode, the capability for
such one-to-one mapping does not exist, although sections
allow portions of a user's program to be grouped logically
as they do segmented mode.

Currently on the System 8000, the code, data, and bss areas
of a module can be manipulated separately. If all of the
data in one module is contained in one section, it is possi
ble to manipulate that section at link time. The capability
to manipulate sections by name, whatever their contents, is
not yet implemented.

The assembler allows a program to be divided into up to
three types of sections: program section, absolute section
and common section. Each section can contain up to three
areas: a code area, a data area, and a bss (uninitialized
data area). The code and data areas can contain any legal
assembler statement, but the bss area can contain uninitial
ized data only. In addition, the code area is limited to
64K; the the data and bss areas combined cannot exceed 64K.

There are three area assembler directives.

AREA ASSEMBl~ER DIRECTIVES

.code

Directs the assembler to change to the code area of the
current section.

.data

Di rec ts the assembler to change to the data area of the
current section.

.bss

Directs the assembler to change to the uninitialized data
area of the current

.code

5-2

section.

//enter the code area of current
//section

Zilog
10/14/83

5-2

AS

.data

.bss

5 .• 3.1. Program Sec:tions

Zilog

//enter the data area of current
//section

//enter the bss area of current
//section

AS

.A program section contains ,any legal assembly language
statement. Each module must h've one unnamed program section
but can have additional named program sections. A section
name consists of a valid identifier. By default, a module
is in the data area of the un~amed program section at the
beginning of assE~mbly. The assembler directive .psec both
indicates the beginning of a program section and allows
.changing among proqram sections •

• psec [<section_name>]

Indicates the beginning of a program section or directs the
assembler to change to the specified program section, or to
the default program section if section is not specified.

Whenever a new program section is entered, the module is in
the data area of that section, by default. Upon return to a
section, the module is in the. the last previously entered
area of that section. An example of the use of the .psec
directive along with the area directives follows:

.psec arithmetic

count: . word 0

.code

LD R0, count

INC R0

LD store, R0

.bss

5-3

//enter the data area (default) of
//the program section named
//arithnetic

//declare a word named count
//with initial value 0

//enter code area of program
//section arithmetic

//load the count into register 0

//increment the count by 1

//load the new count into bss
//symbol store

//enter the bss area

Z~log 5-3
10/14/83

AS Zilog AS

store: .word //word value store

.psec //return to the unnamed (default)
//program section. The program
//returns to the last previously entered
//area of the default program section

5.3.2. Absolute Sections

An absolutE~ section is one whose memory image refl1ects the
absolute location of the section in memory. Since there can
be only one absolute section per module, it has no name.

Absolute S'!ction Directive

.a sec

Directs the assembler to change to the absolute section of
the current module. The module is in the data area of the
section, by default. Examples of its use follow:

.asec //enter the absolute section

.extern procl, proc2\ //define external symbols
proc3,proc4

.=10
jumptab::.addr procl\ //absolute location 10

proc2, proc3\ //define jump table
proc4\ //containing addresses

//of external routines

5. 3. 3. Co1nmon Sections

Common sections allow reference to sections of
in several different modules. At link time,
are merged into one section using the size of
section for the merged one. A common section
of a valid identif1er.

the :same name
such sections

the largest
name consists

Common Section Directive

.csec <section name>

Indicates the beginning of a common section or directs the
assembler to change to· the specified common section. The

5-4 Zilog
10/14/83

5-4

AS Zilog AS

following example shows the use of common sections in three
different modules:

Module 1, named filel.s, contains:

. csec mycommons:

.=.+10
Ll::.word %FEFE //a word at location 10

Module 2, named file2.s, contains:

.csec mycommons

.=.+20
L2::.word %ABAB //a word at location 20

Module 3, named file3.s, contains:

.csec mycommons

.=.+10
L3::.word %CDCD //a word at location 10

When these three files are liQked with the command

ld -o final filel.o file2.o file3.o

the resulting comm<>n section is equivalent to a single
module that contains the following code:

.csec mycommons
Ll::L3:: .word %CDCD
L2::. word %ABAB

//a word at location 10
//a word at location 20

NOTE

The value at location 10 in the last file takes
precedence over the value at location 19 in the
first file be•::ause of the order in which the files
were placed i1ll the linker coJDIDand line.

5.4. Local Blocks

Local blocks allow further st~ucturing of assembly language
programs. Local blocks are ~nclosed within the the symbols
°'{" and "}". They can be nested. The symbols "{" and "}"
must be the only characters on the line.

5-5 Zilog
10/14/83

5-5

AS Zilog AS

Locals labels, described in Section 3, can be used within
local blocks only. The scope of any local symbol is the
nearest enclosing local block delimiter. For example:

{

-ic.. 1: =2 0
ld r0, #-Ll

-L2:ld r2, #%10
ld r0, #-L2

{
-Ll:=l0
ld r0, #-Ll

}

}

S.S. Location Counter

//start local block

//declare local constant
//reference local constant
//declare local label
//reference the local label

//start nested local block
//declare local constant
//reference -Ll equals 10

//end nested local block

//reference -Ll equals 20

//end local block

The assembler tracks the location of the current statement
with a location counter, just as an executing program does
with its program counter. There is a location counter asso
ciated with each of the three possible areas of a section:
data, code and bss. The counter value represents a 16-bit
offset within the current area. The offset can be an abso
lute value if the area falls within an absolute section or
it can be a relocatable value if the area falls within a
program or common section. If it is an absolute value, the
location counter reflects the absolute memory location of
the current statement. If it is relocatable value, the
location counter reflects the relocatable offset of the
statement. The relocatable offset can be adjusted at link
time, depe!nding on where the section is finally allocated.

The location counter symbol "." can be used jLn any expres
sion, and represents the address of the first byte of the
current instruction or directive.

S.S.l. Location Counter Control

Two assembler directives enable control of the location
counter:

5-6 Zilog
10/14/83

5-6

AS Zilog AS

.• even

Increases the location counter by one if it holds an odd
address. Has no effect if the location counter holds an
even address .

• odd

Increases the location counter by one if it holds an even
address. Has no effect if the location counter holds an odd
address.

5.5.2. Line Number Directive

An additional directive is provided by the assembler:

.. 1 ine <number> [' "' (filename) '"']

Sets the current line number to the number specified. An
optional filename can be provided to indicate the name of
the file (module) being processed. In conjunction with the
System 8000's include facility, this directive can be used
for error reporting.

5-7 Zilog
10/14/83

5-7

AS Zilog AS

APP,NDIX A
SUMMARY OF ASSEMBLER DIRECTIVES

A.l. Introduction

This appendix summarizes the assembler directives. The
grammar rules that apply to their use are described in Sec
tion 3 .

• seg

Directs the assembler to begin assembling in segmented mode.
By default, the assembler assembles in non-segmented mode.
Any program that contains a .seg directive is assumed to be
a segmented program .

• nonseg

Directs the assembler to return to assembling in non
segmented mode •

• even

Increases the location counter by one if it holds an odd
address. Has no effect if the location counter holds an
even address .

• odd

Increases the location counter by one if it holds an even
address. Has no effect if the location counter holds an odd
address .

• line <number> ['"'(filename)'"']

Sets the current line number to the number specified. An
optional filename can be provided to indicate the name of
the file (module} being processed. In conjunction with the
System 8000's include facility, this directive can be used
for error reporting.

A-1 Zilog
10/14/83

A-1

AS Zilog AS

.comm <expression> <label>+

Defines a label as a common label .

• extern <label>+

Defines a label as an external label .

• code

Directs the assembler to enter the code area of the currect
section .

• data

Directs thE~ assembler to enter the data area of the current
section .

• bss

Directs the assembler to enter the uninitialized data area
of the current section .

• psec [<sec::tion_name>]

Directs the assembler to change to the specified section .

• csec <section name>

Directs the assembler to change to the specified common sec
tion .

• asec

Directs the assembler to change to the the absolute section .

• byte (<nU1111ber> ' ('<express ion>') ' I <express ion> I ' "•string' "') *

Allocates storage and initializes it with the specified byte
value(s) which can be a series of constant and relocatable
expressions or an ascii string. Number is the repetition
factor. When a number is specified, the expression must be
enclosed in parentheses~ strings are enclosed in double
quotes.

A-2 Zilog
10/14/83

A-2

AS Zilog AS

.word (<number> ' ('<expression>')' I <expression>)*

Allocates storage and initializes it with the specified word
value(s) which can be a series of constant and relocatable
expressions. Number is the repetition factor. When a number
is specified, the expression must be enclosed in
parentheses.

~long (<number> '('<expression>'>'l<expression>)*

Allocates storage and initializes it with the specified long
value(s) which can be a series of constant and relocatable
expressions. Number is the repetition factor. When a number
is specified, expression must be enclosed in parentheses .

.. quad (<number> ' ('<expression>') ' I <expression>)*

Reserves 64 bits of storage. Only double precision floating
point numbers fill the allocated storage completely. If the
value does not fill the allocated storage completely, no
sign extension is performed. Number is the repetition fac
tor. When a number is specified, the expression must be
enclosed in parentheses .

.. extend (<number> '('<expression>'>'l<expression>)*

Reserves 80 bits of storage. Only extended precision float
ing point numbers fill the allocated storage completely. If
the value does not fill the allocated storage completely, no
sign extension is performed. Number is the repetition fac
tor. When a number is specified, the expression must be
enclosed in parentheses .

.. addr (<number> ' ('<expression>')' I <·expression>)*

When assembling in non-segmented mode, allocates storage and
initializes it with the specified 16-bit value which can be
a series of constant and relocatable expressions. Number is
a repetition factor. When number is used, expression must
be enclosed in parentheses.

When assembling in segmented mode, allocates storage and
initializes it with a 32-bit value.

A-3 Zilog
10/14/83

A-3

AS Zilog AS

.blkb <expression>

Allocates storage in bytes. The number of bytes is speci
fied by the expression. No initialization occurs .

• blkw <expression>

Allocates storage in words. The number of words is speci
fied by the expression. No initialization occurs .

• blkl <expression>

Allocates storage in long words.
is specified by the expression.

The number of long words
No initialization occurs.

A-4 Zilog
10/14/83

A-4

AS Zilog AS

APPENDIX B
KEYWORDS AND SPECIAL CHARACTERS

KEYWORDS

Certain special symbols are reserved for the assembler and
can not be redefined as symbols by the programmer. These
are the names of condition codes, register symbols, assembly
language instructions.

B-1

CONDITION CODES

c LE
EQ LT
GE MI
GT NC

CONTROL

FCW
FLAGS
NSP
NS POFF
NS PS gG

s
v
z
NV!

NE PE
NOV PL
NZ PO
ov UGE

REGISTER SYMBOLS

PSAP
PSAPOFF
PSAPSEG
REFRESH

Flag Names

c
p
VI

Zillog
10/14/83

UGT
OLE
ULT
z

B-1

AS

AFF
CMPFL1G
DBL
DE
DZ
FF LAGS

B-2

Zilog

FLOATING POINT KEYWORDS

FOPl INV OUFLG
FOP2 INX PCI
FOV IN PCZ
INTFLG IX PROJ
I NVF LG NAN RM

NORM RN

FLOATING POINT CONDITION

FEQ FGU
FGE FLE
FGEU FLEU
FGT FLT

.E1LU
!:?NEU
FORD
~.,UN

Zilog
10/14/83

RP
RZ
SCON
SGL
SYSFLG
TRAPS

CODES

AS

USER
WARN

B-2

AS

ASSEMBLY

ADC EI
ADCB EX
ADD EXB
ADDB EXTS
ADDL EXTSB
AND EXTSL,
ANDB FABS
BIT FABSD
BITB FABSS
CALL FADD
CALR FADDD
CLR FAODS
CLRB FCLR
COM FCP
COMB FCPD
COMFLG FCPF
CP FCPS
CPB FCPX
CPL FCPXD
CPD FCPXE'
CPDB FCPZ
CPDR FCPZX
CPDRB FDIV
CPI FD I VD
CPIB FD IVS
CPIR FEXM
CPIRB FEXPL.
CPSD FINT
CPS DB FINTD
CRSDR FINTS
CPSDRB FLO
CPS! FLDBCD
CPSIB FLDC'I'L
CPS IR FLDC'I'LB
CPS IRB FLDD
DAB FLDI [,
DBJNZ FLDIQ
DEC FLOP
DECB FLDPD
DI FLOPS
DIV FLDS
DIVL FMUL
DJNZ FMULD

B-3

Zilog

LANGUAGE INSTRC?CTIONS

FMULS
FNEG
FNEGD
FNEGS
FNORM
FNORMD
FNORMS
FNXM
FNXMD
FNXMS
FNXP
FNXPD
FNXPS
FREM
FR ES FLAG
FR ES TRAP
FSCL
FSETE'LAG
FSETMODE
FSETTRAP
FSIGQ
FSQR
FSQRD
FSQRS
FSUB
FSUBD
FSUBS
HALT
IN
INB
INC
INCB
IND
INDB
INDR
INDRB
INI
!NIB
INIR
IN I RB
IR Err
JP
JR

Zilog
10/14/83

LO POPL
LOA PUSH
LOAR POSHL
LOB RES
LDC TL RESB
LDCTLB RESFLG
LDD RET
LDOB RL
LDOR RLB
LDORB RLC
LOI RLCB
LDIB RLDB
LDIR RR
LDIRB RRB
LOK RRC
LDL RRCB
LDM RRDB
LOPS SBC
LOR SBCB
LDRB SC
LDRL SDA
MBIT SDAB
MREQ SDAL
MRES SOL
MSET SDLB
MOLT SOLL
MOLTL SET
NEG SETB
NEGB SETFLG
NOP SIN
OR SINB
ORB SINO
OTDR SI NOB
OTDRB SINOR
OTIR SINDRB
OTIRB SIN!
OUT SINIB
OUTB SINIR
OUTD SINIRB
OUTDB SLA
OUT! SLAB
OUTIB SLAL
POP SLL

AS

SLLB
SLLL
SOTDR
SOTDRB
SOT IR
SOTIRB
SOOT
SOUTB
SOUTO
SOUTDB
SOOT I
SOOTIB
SRA
SRAB
SRAL
SRL
SRLB
SRLL
SUB
SUBB
SUBL
SWAP
TCC
TCCB
TEST
TES TB
TES TL
TRDB
TRDRB
TRIB
TRIRB
TRTDB
TRTDRB
TRTIB
TRTIRB
TSET
TS8TB
XOR
XORB

B-3

AS Zilog

Pseudo Instructions

JPR CAL LR

When defining symbols, users must also avoid the f<>rms:

Rn where
RHn 0 I~ RLn where

n
n

is
is

a number from 0 to 15
a number from 0 to 7

AS

RRn where n
RQn where n

is
is

any of the even numbers from 0 to 14
any of the numbers 0, 4v 8, 12

Fn where n is a number from 0 to 7

SPECIAL CHARACTERS

The list of special characters below includes delimiters and
special symbols. The difference between them is that delim
iters have no semantic significance (for example, t:wo tokens
can have any number of blanks separating them) , whereas spe
cial symbols do have semantic meaning (for example, # is
used to indicate an immediate value).

The class of delimiters includes the space (blank), tab,
line feed, carriage return, semicolon (;),and comma (,).

The comment construct enclosed in the symbols /* is also
considered a delimiter.

The special symbols and their uses are as follows:

B-4

+ Binary addition; unary plus

Binary subtraction; unary minus

* Unsigned multiplication

I Unsigned division

A< Shift left

A> Shift right

A$ Bitwise and

Al Bitwise or

Ax Bitwise xor

Internal label terminator

:: Global label terminator

Zilog
10/14/83

B-4

AS

B-5

Zi1Log AS

Local label indicator

:= Constant and variable initialization

% Nondecimal number base specifier

:fl: Immediate data specifier

@ Indirect address specifier

() Enclose expressions selectively; enclose octal or
binary number base indicator; enclose index p~rt
of indexed, based, and based indexed address

Location counter indicator

II Begin comment

<< >> Denotes segmented address

Enclose short offset segmented address

AS Access segment portion of address

Ao Access off set portion of address

AB Binary-coded decimal

AC Ones complement

AFS Convert to floating single

AFD Convert to floating double

AF Convert to floating extended

Zilog
10114183

B-5

AS Zilog

APPENDIX C
~~ssEMBLER ERROR MESSAGES

AS

Appendix C describes the assembler warning and error mes
sages.

Warnings

Errors that cause warning messages do not interfer with the
operation of the assembler, but they should be corrected
before the a.out file is executed.

Operand too large
Value too large

A number too large for a data type or instruction field
has been used; for example, ".byte %ffff".

Syntax errors

Most synta-x error messages are self explanatory; those that
are not self-explanatory are listed here.

When there is more than one syntax error per line, only the
first is reported. When syntax errors are detected, no
a.out file is created. Check the appropriate section of
this manual for correct syntax.

Expecting carriage return or linefeed

C-1

Extra characters (identifiers, expressions, punctuation
etc.) were found at the end of a statement. The most
common situations where this can occur are listed
below.

A label is followed by something other than a statement
beginning or the ":=" operator.

An opcode is followed by something other than an
operand, or floating poi~t rounding or infinity mode.

A ".psec" din~ctive is .followed by something other than
an identifier ..

A ".byte," ".word," ".long," or ".addr" is followed by
something other than an address expression or an
addres~ expression repeat count.

Commas are missing between
infinity modes, address

operands, rounding modes,
expressions in ".byte",

Zilog
10/14/83

C-1

AS Zilog AS

".woi::-d", ".long", or ".addr" statements, identifiers in
".comm" and ".extern" statements, or between the
expn~ss ion and the fir st identifier in a 11

• comm state
ment .. "

Missing binary operators such as "+", 0
-", ""X 11 in

ex pn~ss ions.

Addressing modes must be punctuated exactly as
explained in Section 4 of this manual. In certain
cases a missing left parenthesis will cause this error
message.

The "'.1 ine 11 directive has an optional :string argument
for the filename. Anything other than a string after
the line number will result in this error.

Expecting beginning of line
The first symbol in the statement is one that cannot
legally begin a statement.

Eipecting beginning of program
The first symbol in the first line of the ~rogram is
one that cannot legally begin a statement.

Semantic or Fatal errors

Only the first semantic error for a line is reported. An
a.out file may be created but it will be corrupt. Semantic
errors are often associated with syntax errors. Correct the
syntax errors first.

Block specifier must be constant
Expression used to specify the size of a block of
storage for a 11 .blkb 11

, ".blkl", or " .. blkw" statement
was relocatable.

Bss cannot be initialized
This indicates that the programmer entered the bss area
with a ".bss" directive and placed inst:t:uctions or ini
tialized data there. The ".bss" area can only contain
u n in i t i a 1 i zed st o rage as i n 11

• b 1 kb" , " • b 1 k 1 111
, " • b 1 kw"

etc.

Invalid as.sigmnent

C-2

An attempt was made to associate a symbol name! with an
external or undefined value in a ":=" direct assign
ment.

Zilog
10/14/83

C-2

AS Zilog AS

Invalid constant
An expression that should have been constant was found
to be relocatable or external.

Invalid operand coilllbination
The operand combination used with a specific instruc
tion was invalid. Refer to the Z8000 CPU Technical
Manual or Floating Point Emulator User'~ Manual entry
for the specific instruction ~o find the valid operand
combinations.

Invalid section na11De
A ".psec", ".csec", or ".asecn directive was used with
a name that had been defined as a label elsewhere.
Section names can only be defined with section direc
tives.

Invalid token
An invalid token was discovered, such as an improper
identifier or floating point number.

Mixed relocatable and absolute
A relative instruction's' target was absolute yet the
instruction was in a relocatable section or vice versa.

Nesting too deep
Nested blocks denoted by enclosing brackets "{" and "}"
exceeded the currently implemented nesting depth.

Out of nodes
The assembler has run out of space for initialization.
This usually indicates that too many values were used
in a data statement. It is suggested that the state
ment be broken into several statements.

Register must be B-7
A byte register was used with a register number other
than 0-7. Only the first seven registers of the Z8000
may be used as byte registers.

Symbol redefined
A symbol that was previously defined has been rede-
fined.

Segment overflow
More than 64K bytes of code, data and bss has been
placed into a single section.

~roo :many segments
More than 256 sections (i.e. ".psec", ".csec", or
".asec") have been defined.

C-3 Zilog
10/14/83

C-3

AS Zilog AS

Undefined symbol
A symbol has been referenced but no definition has been
found. If the -u option of the assembler is used, all
such references will be made external without an expli
cit ".extern" statement.

Unknown ke!yword
A symbol beginning with "." was used but no keyword by
that name was found. Only assembler keywords are
allowed to begin with ".".

Both sides of <binary operator> must be constants
Invalid addition (or subtraction) expression
Invalid expression type for As (or Ao, or I I> operator
Invalid expression type for left (or right) side
of <binary operator>

The rules for relocatable, constant or external expres
sions may have been violated. Also some operators have
additional constraints (for example, 11 "'·s 11

, ""'O") and
the rules for operators may have been violated.

Bad relocation bits
Cannot determine expression type
Erroneous expression type
Nodes allocated at end of statement
Too many bits assembled for word
Unexpected tag in intermediate file
Unexpected tag in symbol file
Unknown area
Unknown expression type
Unknown scope
Unknown tag in intermediate file

Generally these are errors associated with syntax
errors, or a previous semantic error. Correct the
other errors first, before attempting to fix these. If
one of these errors occurs without other errors it may
be an assembler internal error.

Fatal errors

These errors cause the assembler to abort immediately.

Invalid option
An unknown command line option was invoked.

Yacc stack overflow
Too many states were used in parsing the grammar.

C-4 Zilog
10/14/83

C-4

AS Zilog

APPENDIX D
DEBUGGER SUPPORT DIRECTIVES

AS

The following directives are for debugger support and are
only produced by compilers. They are not intended for use
by assembly language programmers .

. stable <number>
Allocate space for source code line number with associ
ated assembly language code •

. stabn <constant expr> ',' <constant_expr>
<constant expr> ',,·-, .. ,string'"'

Allocate symbol table entry for non-relocatable
debug information.

I I ,

symbol

' ' , .stabp <constant_expr> ',' <constant expr>
<constant expr> ',' <constant expr> ',' '"' st~ing '"'

Allocate symbol table entry for parameter debug infor
mation •

• stabr <constant_expr> ',' <constant_expr> ','
' " '

D-1

string ' "'
Allocate symbol table entry
debug information.

Zilog
HJ/14/83

for relocatable symbol

D-1

THE C PROGRAMMING LANGUAGE

c Zilog c

ii Zilog ii

c Zilog c

Preface

The System 8000 uses the C programming language extensively.
The operating system, ZEUS, and a majority of the programs
are written in c. This document supplements the information
in The £ Programm:ing Language by B. w. Kernighan and D. M.
Ritchie (Prentice-Hall, 1978). The reader should be fami
liar with the basic concepts of C before reading this docu
ment. For information on the calling conventions, see Sys
tem 8000 Calling Conventions (CALL CONV).

Each installation contains machine dependencies that affect
the C programming language, despite the universality of the
language. Also, as a dynamic language, C reflects changes
to handle situations not previously addressed. This docu
ment describes these machine dependencies and C language
changes.

Conversion of programs to the ZEUS system is described in
Section 1. Machine and object format dependencies, the
setret and longret routines, and the problems encountered
wh~n passing parameters in registers are discussed.

Recent changes to the C language not documented in The C
Programming Languag! are discussed in Section 2.

iii Zilog iii

c Zilog c

iv Zilog iv

c Zilog

Table of Contents

SECTION 1 CONVERSION OF PROGRAMS TO ZEUS •••••••••••••

1.1.
1. 2.
1. 3.
1. 4.
1.5.
1. 6.
1. 7.

Introduction ••••••••••••••••••••••••••••••••••
Setret and Longret Routines •••••••••••••••••••
Impact of Passing Parameters in Registers •••••
Object Format Dependencies •••••••••••••••&••••
Byte Order Within Words •••••••••••••••••••••••
Machine Architecture Dependencies •••••••••
C Compiler Features ••••••••••••••••••••••o

SECTION 2 RECENT CHANGES TO C ••••••••••••••••••••••••

v

2 .1.
2.2.
2.3.
2.4.
2.5.

General •••••••••••••••••••••••••••••••••••••••
Structure Assignment ••••••••••••••••••••••••••
Structure and Union Members •••••••••••••••••••
Enumeration Type ••••••••••••••••••••••••••••••
Void Data Type ••••••••••••••••••••••••••••••••

Zilog

c

1-1

1-1
1-1
1-1
1-7
1-7
1-8
1-8

2-1

2-1
2-1
2-1
2-2
2-4

v

c

Figure
1-1
1-2
1-3

2-1

vi

Zilog c

List of Illustrations

Example of PDP-11 Program ••••••••••••••••••• 1-1
System 8000 Version of Figure 1-1 Program ••• 1-2
88000 Program: Different Type Arguments ••••• 1-6

Named Structured.Fields Within Unions ••••••• 2~2

Zilog vi

c Zilog c

SECTION 1
CONVERSION OF PROGRAMS TO ZEUS

1.1. Introduction

Although the standard System III UNIX runs on the System
8000 and the C compiler accepts the C language, users must
be aware of machine dependencies that may be present in
their programs. This section describes the most common
machine dependencies that must be removed when porting pro
grams to the System 8000.

1.2. Setret and Longret Routines

When using the C language routine on the System 8000, there
are problems of declaring register variables when setjmp and
longjmp are used. Replacing setjrnp and longjmp with setret
and longret and removing the register attribute of variable
declarations makes the program executable on the System
8000.

The System 8000 C compiler's stackframes differ from the
PDP-11 UNIX. The System 8000 contains only one register
that is used as both the frame pointer and stack pointer.
It is not possible to move back up the subroutine call chain
(as the PDP-11 UNIX does) to restore :the register variables.

1.3. Impact of Passing Parameters in Registers

The Z8000 processor has a larger register set than the PDP-
11 processor. To use these registe~s efficiently, parame
ters are passed in registers on the System B000 instead of
being passed on stack as on the PDP-11. Programs using
parameters that are passed on the stack and then picked off
from the· stack do not work on the .System 8000. Most pro
grams need only to be recompiled to accommodate this change.
In cases when procedures handle a variable number of parame
ters, however, a special process must be followed, as
described in the paragraphs that follow.

Figures 1-1 and 1-2 illustrate how a machine-dependent pro
gram with a variable number of parameters can change to
accommodate parameter passing in the registers. Figure 1-1
shows a program running on PDP-11 with arguments picked off
from the stack. This program can have up to two pointer
arguments. The same program is shown in Figure 1-2 with

1-1 Zilog 1-1

c Zilog

changes to handle parameter passing in the rE~gisters.
/*
**
**
**
**
**
**
**
**
**
*/

This program allocates space for up to two
string arguments and then copies them in
the allocated space. The first argument
(na) is the number of arguments and the
second (ap) and the third (optional) argu
ments are the pointers to the strings: to
be copied. It returns a pointer to the
location where the strings have been copied.
have been copied.

char *
copy(na, ap)
char *ap;
{

}

1-2

re~gister char
char
re~gister int
p = ap;
n = 0;
if (*p -- 0)

*p, *np;
*onp;

return 0;
do
{

n++;
} while (*p++);
if (na > 1)
{

}

p = (&ap)[l];
while (*p++)

n++;

onp = np = alloc(n);
p = ap;
while (*np++ = *p++)

continue;
if (na > 1)
{

p = (&ap)[l];
np--;

n;

while (*np++ = *p++)
continue;

}
re!turn onp;

Figure 1-1. Example of PDP-11 Pre>gram

Zilog

c

1-2

c Zilog

char *
copy(na, apl, ap2}
char *apl, *ap2;
{

}

reg char
char
reg int
p = apl;
n = 0;
if (*p -- 0}

*p, *np;
*onp;
n;

return 0;
do
{

n++;
} while (*p++};
if (na > 1}
{

}

p = ap2;
whil•e (*p++}

n++;

onp = np = alloc(n};
p = apl;
while (*np++ = *p++}

continue;
if (na > 1}
{

}

p = ap2;
np--;
whil1e (*np++ = *p++}

continue;

return onp;

Figure 1-2. System :8000 Version of Figure 1 Program

1-3 Zilog

c

1-3

c Zilog c

Modifying programs with a variable number of arguments of
different types is difficult. Figure 1-3 shows a routine
with a variable number of arguments of different types.
This is a version of the C library routine printf, modified
to illustrate parameter passing in registers·.

#define
:fl:def ine
#define
#define
#define

R7
R5
R3
p:rmax
t:rue

0
0
0

5
1

I* prcnt -- 0
I* prcnt -- 0
I* prcnt -- 0
I* max. number

implies r7 already seen *I
implies r5 already seen *I
implies r3 already seen *I
of reg ist,er parameters *I

I*
**
**
**
**

Routine to align parameter pointer consistent with
the Z8~00 calling conventions. It skips over
unused registers. This happens in C only for long
parameters passed in registers.

*/
zalign(prcnt,
int *prcnt;
int **ip;

ip, stk)
/* parameter count */
/* pointer to low-order word of long word */
/* address of first parameter in the stack */ int *stk;

{

}

1-4

int t;
/* long cannot start in r6 or r4 */

if ,(*prcnt == R7 I I *prcnt -- RS)
{

('*prcnt) ++;
('* i p) ++;

/* skip over the unused register */

}
else if (*prcnt == R3)
{

/* long cannot start in r2 */

/* skip over r2 */ *prcnt += 2;
*ip = &(*stk);
rieturn;

/* parameter comes from the stack */

}
/* exchange order of the words in a long word; they were

inverted when they were put into local storage */
t = **ip;
**ip = *(*ip + l);
*(*ip + 1) = t;

Zilog 1-4

c

I*
**
**
**
*/

1-5

Zilog c

An example routine using a variable number of parameters
each of which can be a different size. This is a sample
of a formatted I/O routine.

printz(fmt,r6,r5,r4,r3,r2,stack)
register unsigned char *fmt; /* pointer to format string */
int r6,r5,r4,r3,r2; /* parameters passed in registers */
int stack; /* first parameter in the stack */
{

int pr6;
int prS;
int pr4;
int pr3;
int pr2;

int prcnt;

int i;
union{

} x;
/* save regi~ter
pr6 = r6;
pr5 = r5;
pr4 = r4;
pr3 = r3;
pr2 = r2;
x.ip = &pr6;
prcnt = 0;
while (true)

/* storage for parameter register 6 */
/* the order of declaration of storage for */
/* parameter registers has two effects: */
/* first, long words have their words */
/* exchanged; second, the pointer to
/* parameter storage can be incremented */
/* for parameters in registers and the stack */
/* number of parameters seen */

int *ip; long *lp;

parameters in storage */

Zilog 1-5

c Zilog

{ /* once through for each format character */
i := *fmt++;
switch (i)
{

case ' ': return;
case '%': i = *fmt++;

switch(i)
{

/* end of format */

case 'd': putint(*x.ip++);
break;

c

case 'D': if (prcnt < prmax)
zalign(&prcnt,&x.ip,&stack);

putlong(*x.lp++);
/*second word done below*/

prcnt++;
break;

case 'c': putchar(*x.ip++);
break;

default: putchar('%');

}
prcnt++;

putchar(i);
break;

if (prcnt == prmax)
/* start using stack parameters */
x.ip = (int *)&stack;

}
}

}
main ()
{

break;
default: putchar(i);

break;

printz("%c0, 'z');
printz("double: %D0,1L);
printz("decimal: %d0,69);
printz("%c%c%c%c%c%c%c0, 'a', 'b', 'c', 'd', 'e', 'f', 'g');
printz("%D %D %D %D0,100L,123456L,1L,98765432L);
printz("%D %d %c %d0,32L,10,'x',52);
}

Figure 1-3. A System 8000 Program with Variable N1J1mber
of Arguments of Different Types

1-6 Zilog 1-6

c Zilog c

1.4. Object Format Dependencies

Programs that extract header information from the object
files must be modified. Typical UNIX utilities that look at
the object files (for example make and nlist) are already
available on the System 8000-:---T°he entire object file pro
duced by the language processors on the System 8000 conform
to the System 8000 object code format. Refer to a.out (5)
for a complete description of the System 8000 object code
format.

1.5. Byte Order Within Words

Byte order on the System 8000 differs from byte order on the
PDP-11. On the System 8000, the high-order byte of a word
has an even address and the low-order byte has the next
higher odd address. On the PDP-11, this is reversed. This
means that the PDP-11 programs that manipulate bytes within
a word or long quantities with pointers may not work
correctly on the System 8000. Also,· transporting files
between a System 8000 and a PDP-11 requires any word quanti
ties within the file to be byte-swapped.

For example, suppose that starting at memory. location 100,
there is a string of eight bytes (all numbers are in hex) :

00, 01, 02, 03, 04, 05, 06, 07

On both the PDP-11 and the Z8000, these values occupy the
eight consecutively addressed locations 100-107. However,
consider the word value at location 102. On the 28000, 02
is the high-order byte, so the value is 0203. ·On the PDP-
11, 03 is the high-order value, so the value is 0302. Mani
pulations such as:

char *p;
int i;
i = (*p++*256) + *p++;

produce different results on the two machines.

To illustrate the problemm of transferring files between the
two machines, consider the string to have originated on the
PDP-11 as a structure containing four byte values followed
by two word values:

1-7 Zilog 1-7

c Zilog c

100: 00
101: 01
10 2: 0 2
103: 03
104: 0504
105: 0706

When this string is moved to a Z8000, it becomes:

100: 00
101: 01
102: 02
103: 03
104: 0405
105: 0607

So, before the data can be processed, the words at 104 and
106 must have the bytes reserved, while the bytes at 100
through 103 must not be changed.

1.6. Machine Architecture Dependencies

Another architecture dependency concerns the use of the
/dev/mem device. On the PDP-11, the system data space
begins at location 0 of /dev/mem. On the System 80100, this
system instruction space begins at 0. A program such as ps
that needs to examine locations in the system data memory
must use the device /dev/kmem instead of /dev/mem (mem(4)).

The -n option, which takes advantage of the PDP-ll's 8K page
size, is not supported. The System 8000 has a 64K page
size. The -i option (separate I&D) can be used instead.
Both options link a program so that several copies of the
same program can share the first several pages.

1.7. C Compiler Features

The ZEUS C compiler allows register variables of types
sh o rt , in t , po i n t e r , 1 on g , and do u b 1 e • These· can be
unsigned where appropriate. Declarations of register char
are ignored. In nonsegmented mode, there are seven ordinary
registers and four floating (double) registers available for
register variables. In segmented mode, the number of ordi
nary registers is reduced to six.

1-8 Zilog 1-8

c Zilog

The sizes of the various varia,ble types are as follows:

Size (in bits)

character
unsigned character
short
unsigned short
int
unsigned int
pointer (nonsegmented)
pointer (segmented)
long
unsigned long
float
double
register double

8
8

16
16
16
16
16
32
32
32
32
64
80 (IEEE format)

c

Although 80 bits are used internally for register double
variables, this does not mean that results will be accurate
to 80 bits. For example, in the statement

register double d=l.l;

only 64 bits for the floating representation of 1.1 are used
to initialize d. In converting PDP-11 C programs to System
8000 C programs, be aware that the PDP-11 C compiler (CC)
does not do sign extension when characters are cast as
unsigned.

PDP-11 C programs that contain expressions like

(unsigned) C

where c is a character, must be changed to

(unsigned character) C

to suppress sign extension on the System 8000.

1-9 Zilog 1-9

c

2.1. General

Zilog

SECTION 2
RECENT CHANGES TO C

c

A few extensions have been made to the C language described
in The f Programming~_ Language. This section discusses these
extensions.

2. 2. Structure Assi.gnment

Structures can be assigned, passed as
tions, and returned by functions.
taking part must be the same.

arguments to f unc
The types of operands

NOTE

There is a limitation to the C language in ZEUS
implementation of functions that return struc
tures. If an interrupt occurs during the return
sequence and the same function is called again
during the interrupt, the value returned from the
first call can be corrupted. The problem can
occur only in the presence of true interrupts, as
in an operating system or a user program that
makes significant use of signals. Ordinary recur
sive calls are safe.

2.3. Structure and Union Members

Structure and union members are now uniquely identified by
the struct or union of which they are a part. It is legal
for the same identifier to be used, even with different type
and location, in different structures or unions. A simple
example is shown in Figure 2-1.

2-1 Zilog 2-1

c Zilog

I*
** The following is a simpl~ example
** of the use of named structured fields
** within unions or structures.
** The value of the "all" field should
** be 00010203 <hex>.
*I

main O

{
union
{

struct
{

int j;
int k;

} sl;

struct
{

int p;
char j;
char k;

}s2;

long all;

} u,*p;

p = &u ;~

p->sl. :j = 1;
p->s2.:j + 2;
p->s2.k + 3;
}

Figure 2-1. Sample Code For Named Structured ll!'ields

2.4. EnumtHation Type

c

There is a data type similar to the scalar types of PASCAL.
To the type-specifiers in the syntax on paqe 193 of The ~
Programmin~ Language, add

enum-specifier

with syn ta~{

2-2 Zilog 2-2

c Zilog

enum-specifier:

enum { enum-list }
enum identifier { enum-list }
enum identifier

enum-list:

enumerator
enum-list, enumerator

enumerator:

identifier
identifier = constant-expression

c

The role of the identifier in the enum-specifier is similar
to the structure ta9 in a struct-specifier; it names a par
ticular enumeration. For example,

enum color { chartreuse, burgundy, claret, winedark };

enum color *cp, col;

makes color the enumeration tag of a type describing various
colors, and then declares ~ as a pointer to an object of
that type and col as an object of that type.

The identifiers in the enumlist are declared as constants,
and can appear wherever constants are required. If no
enumerators appear with the equal sign (=), the values of
the constants begin at zero and increase by one as the
declaration is read from left tp right. An enumerator with
the equal sign gives the associated identifier the value
indicated. Subsequent identifiers continue the progression
from the assigned value.

Enumeration tags and constants must be distinct and, unlike
structure tags and members, are drawn from the same set as
ordinary identifiers.

Objects with a given enumeration are distinct from objects
of all other types. In the ZEUS implementation, all
enumeration variables are treated as integers.

2-3 Zilog 2-3

c Zilog c

2.5. Void! Data Type

A new data type, void, allows a routine to return nothing.
This data type makes it unnecessary to declare such routines
as returning an integer. An error message is issued if an
attempt is made to use a value from a function returning a
void or if such a function tries to return a value.

2-4 Zilog 2-4

SYSTEM 8888 CALLING CONVENTIONS

CALL CONV Zilog CALL CONV

ii Zilog ii

CALL CONV Zilog CALL CONV

Table of Contents

SECTION 1 SYSTEM aeee CALLING CONVENTIONS ••••.••••.•• 1-1

1.1. Introduction • 1-1
1.2. Register Usage • 1-2
1.3. Stack Organization •••••••••••••••.•••••.•••••. 1-4
1.4. Parameters ••••••••••••••.••••••••••••••••••••• 1-7

1.4.1. The Parameter Register
Assignment Algorithm •••••••••••••••••••••••••••• 1-8
1.4.2. The Algorithm .••••••••••••••••••••••••••• 1-10

APPENDIX A SAMPLE PROGRAM USING CALLING CONVENTIONS •• A-1

iii Zilog iii

CALL CONV Zilog CALL CONV

iv Zilog iv

CALL CONV

Figure
1-1
1-2
1-3

v

1-4
1-5

A-1
A-2

A-3

A-4

Zilog CALL CONV

I

List of Illustrations

Z800QJ Register Usage •••••••••••••••••••••••• 1-2
Z8QJQJQJ Floating Point Register Usage ••••••••• 1-4
Stack Upon Entry To
and After Return From a Procedure ••••••••••• 1-5
Stack During Procedure Execution •••••••••••• 1-6
Underlying Registers •••••••••••••••••••••••• 1-9

A Sample C Program • A-1
Registers Upon Entry To
And Return From Called Routine •••••••••••••• ~-2
Stack Frame During
Execution of Called Routine ••••••••••••••••• ~-3
Assembly Language Code
For Program in Figure A-1 ••••••••••••••••••• A-5

Zilog v

CALL CONV

Table
1-1

vi

Zilog CALL CONV

List of Tables

Definition of Algorithm Elements •••••••••••• 1-12

Zilog vi

CALL CONV Zilog CALL CONV

SECTION 1
SYSTEM 8000 CALLING CONVENTIONS

1.1. Introduction

The System 8000 Calling Conventions allow programs written
in various System 8000 languages to communicate with each
other and to share~ common libraries. The conventions
include argument passing, Stack Pointer status, and register
assignments on entry to and exit from a routine. The con
ventions described here apply to all programming languages
supported by the Z80e10-based System 8000.

The calling conventions:

$ Satisfy the requirements of languages such as C,
PLZ/SYS, FORTRAN, and PASCAL.

Do not introduce undue call and return overhead in code
generated by one language processor at the expense of
another.

$ Minimize the complexity of the code generators.

$ Allow passing of structure parameters by value.

$ Encourage efficiency by allowing local variables to be
kept in registers and parameters to be passed in regis
ters.

The calling conventions have three parts which are described
in the following sections. These three parts describe:

$ How registers may be used by procedures and what hap
pens to the register contents when calling or return
ing.

1-1

How the stack must be organized when entering, execut
ing in, and returning from a procedure.

Where parameters must be when entering or returning
from a procedure.

Zilog 1-1

CALL CONV Zilog CALL CONV

1.2. Register Usage

As shown in Figure 1-1, the Z8000's general-purpose register
set is divided into three groups for the purposE~s of this
calling convention.

NC•N·SEG M ENTED
PROGRAMS

R0 ·----------11

R7
~---------

RS

R14 _________ ...,.
R15

SCRATCH
~-- REGISTERS _____.

SAFE ...
....,__ REGISTERS

OPTIONAL_r-{
SEPARATE

, r FRAME
~ POINTER

STACK POINTER~

SEGMENTEC:I
PFlOGRAMS

~---------

..,__, _____ ___

...., _______ ___

....,_, _____ ___

Figure 1-1 Z8000 Register Usage

RO

R7

RS

R12

R13

R14

R15

The first group is called the scratch regisb~rs and consists
of R2-R7.

NOTE

R0 and Rl, although also considered scratch regis
ters, are never used for parameter passing.

These registers contain value or reference parameters when
entering a procedure and result parameter:3 when returning

1-2 Zilog 1-2

CALL CONV Zilog CALL CONV

from a procedure. w~ile executing, the procedure may use
these registers in any way and does not need to restore them
to their original va.lues when it returns.

The second group is called the safe registers and consists
of R8-Rl4 for nonsegmented programs and R8-Rl3 segmented
programs. The value! in these registers must be the same
when a procedure returns as they were when the procedure was
entered. This means: a safe register can hold the value of a
local variable, because procedure calls do not alter its
value. If a procedure changes the value of a safe register,
it must save the value of that register when it is entered,
and restore it when it returns.

The third group consists of the stack pointer (SP), which is
RlS for nonsegrnented programs and Rl4 and Rl5 for segmented
programs. The stack pointer always points to the top of the
stack.

The calling convention also allows for, but does not
require, the use of a separate frame pointer to point to the
current stack frame (described in the next section). When a
separate frame pointer is used, it is always the highest
safe register, Rl4 for a nonsegmented program, RR12 for a
segmented program.

The Z8000 Floating-·Point Registers (either simulated in
software by the Z8070 emulation package or provided in
hardware by the Z8070 arithmetic processing unit) are simi
larly divided into two groups as shown in Figure 1-2.

1-3 Zilog 1-3

CALL CONV

FLOATING
SCRATCH

REGISTERS

FLOATING
SAFE

REGISTERS

Zilog

• • • •

• • • •

FO

F3

F4

F7

CALL CONV

Figure 1-2 Z8000 Floating-Point Register Usage

The first group is the floating scratch registers, F0-F3.
These registers contain floating-point value parameters upon
entering a procedure and floating-point result parameters
when returning from a procedure. While executing, the pro
cedure can use these registers in any way and does not need
to restore them to their original values.

The second group is the floating safe registers, F4-F7.
These registers are used in the same way as the general
purpose safe registers and thus the values in these regis
ters must be the same when a procedure returns as they were
when the procedure was entered.

1.3. Stack Organization

Figure 1-3 shows how the top of the stack must look when a
procedure is entered. The return address must be on the top
of the stack (pointed to by the stack pointer), followed by
any parameters that must be passed in on the stack. This
figure also shows the stack after the same procedure has
returned. The only difference is that the return address
has been popped off the stack.

1-4 Zilog 1-4

CALL CONV

STACK
POINTER

UPON ENTRY
TO A

PROCEDURE

PARAMETERS
PASSED IN
STOHAGE

RETIURN
ADDf~ESS

l
STACK

GROWTH

Zilog

AFTER RETURN
FROM A

PROCEDURE

PARAMETERS
PASSED IN
STORAGE

!
STACK

GROWTH

Figure 1-3 Stack Upon Entry to and
After Return From a Procedure

CALL CONV

STACK
POINTER

During the execution of a procedure, the stack will contain
a data area called the stack frame (also known as the
activation record) for that procedure. The stack frame is
allocated on the stack by the procedure and contains saved
values, local variables, and temporary locations for the
procedure. Figure 1-4 shows the stack while a procedure is
executing. The called procedure may or may not use a
separate frame pointer as shown. If no separate frame
pointer is used, the size of the stack frame must not change
while the procedure is executing. Thus parameters passed in
storage by calls from this procedure must be accommodated in
temporary locations at the bottom of the stack frame, and
not pushed onto the stack. This organization of the stack
substantially shortens the subroutine entry and exit
sequence.

1-5 Zilog 1-5

CALL CONV Zilog CALL CONV

STACK WITHOUT
SEPARATE FRAME POINTER

STACK WITH
SEPARATE FRAME POINTER

STACK
FRAME

FOR·
EXECUTING

PROCEDURE

PARAMETERS
PASSED IN
STORAGE

RETURN ADDRESS

SAFE REGISTER
SAVE AREA

FLOATING SAFE
REGISTER

SAVE AREA

LOCAL
VARIABLES

AND
TEMPORARIES

!
STACK

GROWTH

E
~

SEPARAT
FRAME

POINTER

STACK
POINTER

_.

PARAMETERS
·PASSED IN
STORAGE

RETURN ADDRESS

OLD VALUE OF
FRAME POINTER

SAFE REGISTER
SAVE AREA

FLOATING SAFE
REGISTER

SAVE AHEA

LOCAL
VARIABLES

AND
TEMPORARIES

!
STACK

GROWTH

STACK
FRAME
FOR
EXECUTING
PROCEDURES

Figure 1-4 The Stack During Procedure Execution

If a separate frame pointer is used, the calling procedure's
frame pointer must be saved on the stack by the called rou
tine as shown in Figure 1-4. In this case, the size of the
stack frame can vary, and thus parameters can be pushed onto
the stack if desired.

The calling convention allows procedures with and without a
frame pointer to be mixed on the stack. From this point of
view, the frame pointer is just a safe register that is used
in an agreed upon way by certain procedures.

If a procedure modifies the contents of any of the safe
registers or floating safe registers while it executes, then
it must save the values of these registers in its stack from
when it is entered so that it can restore them when it
returns. The highest safe register not used as a frame

1-6 Zilog 1-6

CALL CONV Zilog CALL CONV

pointer should be s:aved at the top of the activation record
(nearest the return address) with lower number registers
saved at lower addresses. This is the same order used by
the LDM instruction. Only those safe registers actually
modified by the procedure need to be saved.

Any floating safe registers that are modified by the pro
cedure are saved in the activation record just below the
last general purpose! safe register. Higher numbered float
ing registers are saved toward the top of the activation
record.

1.4. Parameters

Parameters provide cL substitution mechanism that permits a
procedure's activity to be repeated, varying its arguments.
Parameters are referred to as either formal or actual. For
mal parameters are! the names that appear in the definition
of a procedure. Actual parameters are the values that are
substituted for the corresponding formal parameters when the
procedure is called.

The System 8000 parameter-passing conventions cover three
kinds of parameters: value, reference, and result. Value
and reference parame~ters are passed from the calling routine
to the called routine. For value parameters, the value of
the actual parameter is passed. For reference parameters,
the address of the~ actual parameter is passed. For result
parameters, the value of the formal parameter in the called
routine is passed to the corresponding actual parameter of
the calling routine when the called routine returns.

Each kind of parameter has a length given in bytes (denoted
as length(p) for a parameter p). For value and result
parameters, this is the length of the declared formal param
eter as determined by its type. In the absence of formal
parameters, the length of the actual parameter is used. For
reference parameters, the length is the length of an
address, in other words, two bytes in nonsegmented mode and
four bytes in segmented mode.

In addition to a parameter's length, the calling convention
distinguishes betwe~en parameters of floating-point type and
parameters of all other types.

The kind, type and length of a parameter are determined by
the conventions of the languag~ in which the calling and the
called procedures are written. The user must ensure that
these conventions mcltch when mq.king inter language calls.

1-7 Zilog 1-7

CALL CONV Zilog CALL CONV

1.4.1. Tiu! Parameter Register Assignment Algorit11m: This
section describes an algorithm that assigns every parameter
in a parameter list to either a general-purpose register,
floating register, or storage offset. The parameter
assigned to storage offset is passed in a storage location
whose address is the given offset from the Stack Pointer on
entry to the called routine. The algorithm assigns as many
parameters to general-purpose registers r2-r7 and floating
point registers f0-f3 as possible.

The algorithm makes the following assumption:

There are :Eour kinds of general-purpose registers:

$ Byte (denoted as rln, ~hn, n = 0 ... 15)

$ Word (denoted as rn, n = 0 15)

$ Long l~rd (denoted as rrn, n = 0 2, 4, 6, 8, 10, 12,
14)

$ Quad Word (denoted as rqn, n = 0, 4, 8, 12)

$ The lEmgth of a general-purpose register r [(denoted
length(r)] is 1 for a byte register, 2 for a word
register, 4 for a long word register, and 8 for a quad
word register.

1-8

Each general-purpose register has a set of underlying
byte registers as follows:

The underlying register of a
byte register is the register itsel:f.

The underlying registers of a
word register (rn) are the byte
registers rln and ~hn.

~1e underlying registers of a
long word register (rrn) are
rln, rhn, rln+l, and rhn+l.

The underlying registers of a
quad word register (rqn)
are rln, rhn, rln+l, rhn+l,
rln+2, rhn+2, rln+3, and rhn+3.

This is illustrated in Figure 1-5.

Zilog 1-8

CALL CONV Zilog CALL CONV

RQO R 04

RRO RR2 RR4

••••
UNDERLYING

BYTE
REGISTERS

RO R1 R2 R3 R4

RHOIRLO RH11RL1 RH21RL2 RH31RL3 RH4I I

Figure 1-5 The Underlying Registers

If n > m, general-purpose register rxn or rn is
than a genera.1-purpose register rxm or rm.
register rln is higher than a byte register rhn.

higher
A byte

There are eight. floating-point registers, f0-f7, each
capable of holding one floating point value of any pre-
cision.

A floating register fn is higher than a floating regis
ter fm if n > m.

The algorithm starts: by processing each value or reference
parameter in the call in left-to-right order. If there are
available registers of the same size and type as the parame
ter, the parameter is assigned to the highest of these
registers; otherwise~, it is assigned to the next available
storage location. Once a parameter is assigned to storage,
all the parameters in the parameter list that follow it are
also assigned to storage. The same thing is then done for
the result parameters, except they are assigned to the
lowest available registers in sequence r2, r3, r4, ... r7 (
or £0, fl, f2, f3), whereas the other parameters are
assigned to the registers in sequence r7, r6, r5, ... r2 (or
f3, f2, fl, f0). The result parameters can overlap value or
reference parameters in registers, but not in storage.

The algorithm marks byte registers and floating point regis
ters as available or unavailable to keep track of which

1-9 ZilQg 1-9

CALL CONV Zilog CALL CONV

registers have been assigned to parameters, and it uses a
variable, current offset, to indicate which stora9e offsets
have been assigned parameters.

1.4.2. The Algorithm: This algorithm assigns parameters to
registers and storage. The phrases in bold are defined in
detail in Table 1-1.

1. Mark all byte registers underlying r2-r7 as available,
and mark all other byte registers as unavailable. Mark
floating-point registers f0-f 3 as available and mark
all other floating-point registers unavailable.

2. Initialize current offset to 4 if in segmented mode or
to 2 if in nonsegmented mode (thiB allows for the
return address to which the stack poinb~r points).

3. For e~very value or reference parameter in left-to-right
order in the parameter list, do the following::

a. Determine whether p will fit into a regiHter.

b. If p will fit into a register, 43.ssign p to a
value/reference register and mark the underlying
byte registers as unavailable.

c. If p will not fit into a registeru assign p to
storage and mark all available byte and floating
point registers as unavailable.

4. Mark all byte registers underlying r2-r7 as available
and all other byte registers as unavailable. Mark
floating-point registers f0-f3 as available and all
other floating-point registers as unavailable.

5. For e~very result parameter in left-to-right order in
the parameter list, do the following:

1-10

a. Determine whether p will fit into a regiEster.

b. If p will fit into a register, assign p to a
result register.

c~ If p will not fit into a registeru assign p to
storage and mark all available byte and floating
point registers as unavailable.

Zilog 1-10

CALL CONV Zilog CALL CONV

Table 1-1. Definition of Algorithm Elements

1. Determine whether p will fit into a register:

If p is a floating-point value or result parameter,
then p will fit into a register if there is a
floating-point register which is available. Otherwise,
p will fit into a register if there is a register r
such that len9th(p) = length(r) and all byte registers
underlying r are available.

NOTE

C structure parameters greater than four bytes
will not fit in a register.

2. Assign p to a value/reference register:

If parameter p is a floating-point value parameter
then:

a. Assign p to the highest available floating-point
register r.

b. Mark floating-point register r as unavailable.

Otherwise:

a. Find the highest general-purpose register r such
that length (p) = length(r) and all byte registers
underlying r are available.

b. Assign parameter p to register r.

c. Mark all byte registers underlying r as unavail
able, and mark any higher available byte registers
as unavailable.

3. Assign p to a result register:

1-11

If parameter p is a floating-point result parameter
then:

a. Assign p to the lowest available floating-point
register r.

b. Mark floating-point register r as unavailable.

Zilog 1-11

CALL CONV Zilog CALL CONV

Otherwise,

a. Find the lowest general-purpose register r such
that length(p) = length(r) and all byte registers
underlying r are available.

b. Assign parameter p to register r.

c. Mark all byte registers underlying r as unavail
able, and mark any lower available byte register
as unavailable.

4. Assign p to storage:

1-12

a. If length(p) > 1 and current offset is odd, then
add 1 to current offset.

b. Assign parameter p to storage at offset current
offset.

c. J~d length(p) to current offset.

Zilog 1-12

CALL CONV Zilog CALL CONV

APPENDIX A
SAMPLE PROGRAM USING CALLING CONVENT~ONS

This appendix gives an example that uses the System 8000
calling conventions for a C language routine, "caller",
which calls another routine, "called".

Figure A-1 shows the! C code, and Figure A-4 shows the
corresponding assembly language code. Figure A-2 shows the
registers upon entry to "called" and after returning from
routine 11 called". F'igure A-3 shows how the stack looks dur
ing execution of "ca.lled".

A-1

long
/*
**
*/

Called routine - returns long

called (a, b, c, d, e)
long b, c;
int a, d, e;

{

}

/*
**
*/
caller ()
{

}

long y;

return y;

Calling routine

long
int

a2, a3, x;
al, a4, aS;

x = called(al, a2, a3, a4, a5);

Figure A-1 A Sample C Program

Zilog A-1

CALL CONV Zilog CALL CONV

UPON-ENTRY UPON RETURN
TO "CALLED" FROM "CALLED"

RO RO

R1 R1

R2
RETURN

R2
A3(C)

R3
VALUE R3

SCRATCH

R4 REGISTERS
A2(B)

RS

. RS

A1(A) R7

RS RS

VALUE
UNCHANGED

SAFE FROM
REGISTERS ENTRY T10

"CALLED"

R13 R1~1

R14 R14-

STACK R15 STACK RHi
POINTER POINTEFl

Figure A-2 Registers Upon Entry To and
Return From Routine Called

A-2 Zilog A-2

CALL CONV

A-3

STACK
FRAME

OF "CALLER"

STACK
FRAME

OF "CALLED"

I
I
I

Zilog

I
I
I

LOCAL VARI.ABLE~
SAFE REGISTER
SAVE AREAAND
TEMPORARIES
OF "CALLER"

A4 (D)

AS (E)

RETURN
ADDRESS

SAVED SAFE
REGISTERS

LOCAL
VARIABLES

AND
TEMPORARIES
OF "CALLED"

I

t
STACK

GROWTH

--...-

-

SP BEFORE CALL

SP ON ENTRY
TO "CALLED"

SP WHILE
"CALLED" IS
EXECUTING

Figure A-3 The Stack Frame When the
Routine Called is Executing

Zilog

CALL CONV

A-3

CALL CONV Zilog CALL CONV

f p := rl5;
sp := rl5;

.code

called: :
T
jpr Ll0001

Ll0002:
ldl rr2,""Ll+l2(fp)
jpr Lll

Lll:
Ll0000::

add fp, #""L2
ret

Ll0001 ::
sub fp I #""L2
ldm @fp,r2,#6
jpr Ll0002

"'Ll := 0
"'L2 := 20

} /* called */

.data

.code

caller::
T
jpr Ll0004

Ll0005 ::
ld r2,"'Ll+l4(fp)
ld @fp,r2
ld r3,"'Ll+l6(fp)
ld 2 (fp) Ir 3
ld r7,"'Ll+l2(fp)
ldl rr4, ""Ll (fp)
ldl rr2,""Ll+4(fp)
callr called
ldl "NL1+8(fp),rr2

Ll3:
Ll0003 ::

add fp I #""L2
ret

Ll0004::

A-4 Zilog A-4

CALL CONV

sub fp,#""L2
jpr Ll0005

-Ll := 4
""L2 := 22

Zilog

} /* caller */

.data

CALL CONV

Figure A-4. Actual Z8001 Assembly Language Code for Program
in Figure A-1.

A-5 Zilog A-5

Indexed Sequential Access Method (C-ISAM)

C-ISAM Zilog C-ISAM

ii Zilog ii

C-ISAM Zilog C-ISAM

Table of Contents

SECTION 1 OVERVIEW .
. . 1.1. Introduction ••••••••••

1.2. Indexed File Systems •••
1.2.1. Data (odat) File ••••••••••
1.2.2. Index i(.idx) File

SECTION 2

......

FILE CREi\TION AND
INDEX DEJ?INITION .

2.1. Introduction ••••••••••
2.2. C-ISAM File Creation
2.3. Index Definition ••••••

.
2.3.1. Keydesc Structure

2.4. Building AC-ISAM File ••••••••
2.5. Adding Secondary Indexes
2.~. Adding Data •••••••••••••

2.6.1. Reading and Locating Records
2.6.2. Updating A File •••

2.7. Sequential Access
2.8. Random Access •••••

.
2.9. Chaining ··~············

.

SECTION 3 INDEX COMPRESSION A~D CHECKING

3 .1.
3.2.
3.3.

Introduction •••••
Index Compression
Index Check:ing

...
SECTION 4 FILE AND RECORD LOCKING

iii

4.1. Introduction ••••••••••••••••
4.2. File Locking •••••••••••••••

4.2.1. Exclusive File Locking
4.2.2. Manual File Locking

4.3. Record Locking ••••••••••
4.3.1. Automatic Record Locking
4.3.2. Manual Record Locking

Zilog

. . .

. . . .

. ...

. . .

1-1

1-1
1-3
1-3
1-4

2-1

2-1
2-1
2-1
2-2
2-3
2-5
2-6
2-7
2-8

2-12
2-14
2-16

3-1

3-1
3-1
3-4

4-1

4-1
4-1
4-1
4-1
4-2
4-3
4-3

iii

C-ISAM Zilog C-ISAM

APPENDIX A C-ISAM CALLS IN SUMMARY••••••••••••••••••• A-1

APPENDIX B ERROR MESSAGES AND STATUS BYTES ••••••••••• B-1

APPENDIX C DATA TYPES •••••••••••••••••••••••••••••••• C-1

APPENDIX D HEADER FILES •••••••••••••••••••••••••••••• D-1

D.l. HEADER FILE ••••••••••••••••••••••••••••••••••• D-1

APPENDIX E FILE FORMATS•••••••••••••••••••••••••••••• E-1

iv Zilog iv

C-ISAM

Figure
2-1
2-2
2-3
2-4
2-5
2-6
2-7

v

3-1
3-2
3-3

Zilog C-ISAM

List of ·Ill~strations

Keydesc and Keypart Structures ••••••.•••••••
Program To Create C-lSAM File
Program To Add Secondary Indexes ••••••••••••
Program To Add Data •.••••••••••••••••••••••••
Program To Access File Sequentially •••••••••
Program To Access File Randomly •••••••••••••
Program To Interactively Add Record •••••••••

2~1

i-4
2-6
2-9

2-12
2-15
2""'18

Leading Character Compression ••••••••••••••• 3-2
Leading and Trailing Character Compression ~· 3-2
Combined Compression ••••••••••••.••••••••••• 3-3

Zilog · v

C-ISAM

Table
1-1

vi

2-1

8-1
B-2
B-3

Zilog C-ISAM

List of Tables

Functional Summary of C-ISAM Functions ••••••

Mode Parameter for Isread/Isstart Functions •

C-ISAM Error Codes ••••••••••••••••••••••••••
Status Byte One •••••••••••••••••••••••••••••
Status Byte Two •••••••••••••••••••••••••••••

Zilog

1-2

2-7

B-1
B-3
B-3

vi

C-ISAM

1.1. Introduction

Zilog

SECTibN 1
OVERVIEW

C-ISAM

The C-Indexed Sequential Acces.s Method (C-ISAM) is a library
of C language functions that create and manipulate indexed
file systems. The C-ISAM libra,ry, /usr/lib/libcisam.a (non
segmented) or /usr/slibcisam.a (segmented), is available to
the loader when the C compiler, cc, is invoked with the
-lcisam option. When linked with a user-written C language
program (or any program written in a language with access to
c libraries), the C-ISAM library enables progranuners to:

* Create an indexed file system

* Define primary and secondary keys (indexes)

* Add and delete indexes

* Add and delete data reco.rds

* Sequentially or randomly access records

* Lock individual records, groups of records,
or whole file systems

* Rename and erase indexed file systems

* Compress index files to optimize disk access
and save space

This manual describes the use of these functions (summarized
in Table 1-1) in building indexed file systems. The indivi
dual functions are described in the ZEUS Reference Manual,
in keeping with ZEUS documentation conventions. A sununary of
the function calls can be found in Appendix A.

1-1 Zilog 1-1

C-ISAM Zilog C-ISAM

Table 1-1. Functional Sununary of C-ISAM Functions

Group

Unopen File
Operation:s

Open File
Operation:s

Record
operation:s

Misc

1-2

FUNCTION

isbuild

is open
is rename
is erase

isclose

isaddindex
isdelindex
is start

is lock
is unlock
isindexinfo

isuniqueid

isaudit

is read

iswrite
is rewrite
(isrewcurr)
isdelete

isperror
isld
is st

DESCRIPTION

create and
open a file
open an existing file
rename a file
erase a file

close an open file

add a secondary index
delete a secondary index
reset the current key
and the current record
read-lock the file
unlock the file
get index/directory
information about the file
define a unique key
for the file
perform audit trail functions

read a record in sequential
or random mode
insert a record into a file
rewrite a record

delete a record

print C-ISAM error
load value from byte string
store value in byte string

Zilog 1-2

C-ISAM Zilog C-ISAM

1.2. Indexed File Systems

An indexed file system is composed of two types of files:

Data File
Index File(s)

1.2.1. Data (.dat) File:

ZEUS imposes no structure on a file; a file is treated sim
ply as a string of bytes. In contrast, C-ISAM allows a
structure to be imposed upon a data file, making information
access easier and quicker. This structure allows a data file
to be treated as a collection of records, and a record to be
treated as a collection of fi:elds, with one or more fields
within a record defined as the primary key. The primary key
serves to identify the record and as an index to the file.

For example, consider an employee file that has one record
for each employee. Such a file might have the employee iden
tification number defined as the primary key. One or more
secondary keys can be defined for a file providing an alter
nate index to the file. With the employee file, a secondary
key could be defined for the employee's last name.

All C-ISAM data filenames
appended automatically with
created.

Records

(10 characters maximum) are
the suffix .dat when they are

A record is a logical unit of information, composed of one
or more fields. A typical example is an employee record
within a company employee file that contains one such record
for each employee.

Fields

A field is a logical unit of information within a record.
For example, an employee record could contain several fields
including employee id number, name, salary, department
number and so on.

1-3 Zilog 1-3

C-ISAM Zilog C-ISAM

C-ISAM rec~ognizes fields with the following data types
(described in detail in Appendix C):

Fixed-·Length Character Strings (0-255 bytes)
IntegE!rs
Long Integers
Floating Point
Double Floating Point

A field can start at any offset within a r~~cord, allowing
data to be packed within a record.

Primary KE~Y

Every C-ISAM file must have a primary key by which the
records of the file are indexed, and hence~ accessed. A key
can comprise one to eight fields. By default, a primary key
must uniquely identify the records of a fil~~. OthE!rwise, it
must be defined as allowing duplicates.

For example, an employee's last name could be defined as the
primary }~ey for the employee file. But such a key would not
index each record uniquely since more than one employee
could have the same last name. Such a primary kE~Y must be
defined as allowing duplicates. Furthermore,, it could be
defined to comprise three fields: an employee's first, mid
dle and last names.

A special C-ISAM function, isuniqueid, supplies a primary
key for a file when a natural one does not exist.

Secondary Keys

In addition to the indexing provided by the primary key, any
number of secondary keys can be defined for a file ..

1.2.2. Index (.idx) File:

Every C-ISAM data file has an associated index filE~ created
when the the C-ISAM file is built. The index filename is the
C-ISAM ·filename appended with the . idx suf:Eix. ~rhe index
file holds a dictionary describing the file's primary and
secondary keys.

Since there is no limit to the number of key:s that can be
defined for a file, the index file can gr()W quickly. This
consumes disk space and degrades performance. C·-ISAM has
the capacity, however, to compress the key valUE~s held in
the index file. In addition to space savin9s, compression
can improve performance. Index compression is the subject
of Section 3.

1-4 Zilog 1-4

C-ISAM Zilog C-ISAM

SECTION 2
FILE CREATION ANO IllDEX DEFINITION

2.1. Introduction

This section describes, through the use of several sample
programs, the creation and manipulation of C-ISAM files,
including index definition, and the addition of indexes and
data.

2.2. C-ISAM File Creation

The C-ISAM function isbuild(3) defines and creates a C-ISAM
file. As a result of a call to this function two files are
actually created: a data file with the suffix .dat appended
to the filename parameter and an index file with the suffix
.idx appended to the filename parameter. The .dat file con
tains data only; the .idx file holds a dictionary that
decribes the file's indexes, and the indexes themselves.

2.3. Index Definition

Every C-ISAM file must have a primary key; secondary keys
can also be defined for a file either at the time the file
is created or at a later date. The keydesc and keypart
structures, shown in Figure 2-1, define a file's indexes.
These structures are used by the isbuild and isaddindex
functions.

struct keydesc
{
int k flags; - /* flags *I
int k_nparts; I* number of parts in key */
struct keypart

k part[NPAR'TS];
} ; - I* each key part */

struct keypart
{
int kp start; /* starting byte of key part *I
int kp-leng; /* length in bytes */
int kp=type; I* type of key part *I
} ;

Figure 2-1. Keydesc and Keypart Structures For Index Definition

2·-1 Zilog 2-1

C-ISAM Zilog C-ISAM

2.3.1. Keydesc Structure:

In the keydesc structure, the integer k flags holds compres
sion information and indicates if dupficate key values are
allowed. This integer is the arithmetical sum of the values
of the following key descriptors:

- No duplicates (default)
- Duplicates
- Duplicate Compression
- Leading byte compression
- Trailing byte compression

ISNODUPS
ISDUPS
DCOMPRESS
LCOMPRESS
TCOMPRESS
COMPRESS - Complete compression (all three of the above)

Index compression is described in the next section.

Integer k nparts indicates how many parts (fields) make up
the key. ~ach part must be described by a keypart structure.
The number of elements in the k part array should be equal
to the integer value in k_nparti.

Keypart Structure

The keypart structure allows a key to be composed of multi
ple fields, referred to as parts. A key can have as many as
eight parts. The parts of an index need not be contiguous
within record, nor do they have to exist in any particular
order within the record. kp start indicates the starting
byte of the key part, deffned as the byte offset from the
beginning of the record. kp length is a count of the number
of bytes in the part, and-kp type designates the data type
of the part. The types allowe~ by C-ISAM are described in
Appendix c. If this part of the key is in descending ordert
the type macro should be arithmetically added to the ISDESC
macro.

The following examples, based on a mythical personnel sys
tem, illustrate file creation and index definition. The
personnel system consists of two C-ISAM files, the
"employee" file, and the "performance" file. The employee
file holds a record for each employee consisting of:

2-2

employee number
name
address

Zilog 2-2

C-ISAM Zilog C-ISAM

The performance file holds infotmation pertaining to all job
performance reviews for each employee. There is one record
for each performance review, job title change, or salary
change an employee has had. Thus, for every employee record
in the personnel file there may be many records in the per
formance file. The field definitions for the records in
both the personnel file and the performance file are shown
below.

Employee File Definition

Field Name

Employee number
Last name
First Name
Address
City

Location in Record

0 - 3 LONGTYPE
4 - 23 CHARTYPE

24 - 43 CHARTYPE
44 - 63 CHARTYPE
64 - 83 CHARTYPE

Performance File Definition

Field Name Location in Record

Employee number 0 - 3 LONG TYPE
Review date 4 - 9 CHARTYPE
Job rating 10 - 11 CHARTYPE
Salary after review 12 - 19 DOUBLETYPE
Title after review 20 - 50 CHARTYPE

2.4. Building A C-ISAM File

Figure 2-2 shows a sample program that creates both the
employee and performance files, using the isbuild function.
For the employee file, the primary key is defined as the
employee ID number. For the performance file, the primary
key is a two-part key consisting of the employee ID number
and the review date.

2-3 Zilog 2-3

C-ISAM Zilog C-ISAM

#include <isam.h>

struct keydesc key;
int fdemploy, fdperform;

/*
* This program builds the C-ISAM file systems for the
* data files employees and performance.
•k/

main()

mkE~mplkey () ;
fdE~mploy = isbuild ("employee n, 84, &key, ISINOUT + ISEXCLLOCK) ;
if (fdemploy < 0)

{
printf("isbuild error %d for employee file\n", iserrno);
exit(l);
}

mkperf key() ;
fdperform = isbuild("perform", 49, &key,ISINOUT + ISEXCLLOCK);
if (fdemploy < 0)

{
printf("isbuild error %d for performance file\n", iserrno);
exit(l);
}

isclose(fdperform);

mkempl key ()
{

key. k_flags = 0;
key.k_nparts = l;

/* no dups, no compression */
/* one part index */

key.k_part[O] .kp_start = O; /* offset is zero */
key·.k_part[O] .kp_type LONGTYPE; /*type long */
key.k_part[O] .kp_leng = 4; /* 4 bytes */

mkperf key ()
{

key. k_flags = O;
key.k_nparts = 2;

/* no dups, no compression*/

key.k_part[O] .kp_start O; /* offset is zero */
key.k_part[O] .kp_type = LONGTYPE; /* type long */

key.k_part[l] .kp_start = 4; /* offset is four */
key.k_part[l] .kp_type CHARTYPE; /* type char */
key.k_part[l] .kp_leng = 6; /* 6 bytes */

Figure 2-~!. Program To Build Files and Creat•! IndeJces

2-4 Zilog 2-4

C-ISAM Zilog C-ISAM

2.5. Adding Secondary Indexes

With some applications, a primary key is not sufficient to
fully index a file. In such cases, one or more secondary
indexes can be defined. There is no limit to the number of
such indexes; in practice, however, space and access time
must be considered. In the case of the sample employee file
system, two secondary indexes are desirable -- an index on
"last name" in the employee file, and an index on the field
"salary" in the performance file. The following program
(Figure 2-3) creates these two indexes. It is important to
note that while adding indexes the file must be opened with
an exclusive lock. Exclusive file locks are specified in
the mode parameter of the isopen call by initializing that
parameter to ISINOUT + ISEXCLLOCK. The ISINOUT specifies
that the file is to be opened for both input and output, and
the ISEXCLLOCK macro added to ISINOUT indicates that the
file is to be exclusively locked for the current process and
that no other proce~ss will be allowed to access this file.
Note also that duplicates are to be allowed for both secon
dary indexes and that the name field is to have full
compression for its values stored in the index file.

2-5

#include <isam.h>

#qef ine SUCCESS 0

struct keydesc key;
int cstart, nparts;
int fdemploy, fdperform;

/*
* This program adds secondary indexes for the
* last name field in the employee file, and the
* salary field in the performance file.
*/ ' .

main()

int cc;

fdemploy =cc= isopen("employee", ISINOUT + ISEXCLLOCK);
if (cc < SUCCESS)

printf("isopen error %d for employee file\n", iserrno);
exit(l);
}

mklnarnekey () ;
cc = isaddindex(fdernploy, &key);
if (cc != SUCCESS)

{
printf("isaddindex error .%d for employee lnarne key\n",iserrno);
exit(l);
}

isclose(fdernploy);

fdperform =cc= isopen("perform", ISINOUT + ISEXCLLOCK);
if (cc < SUCCESS)

{
printf ("isopen error %d for perform\n", iserrno);
exit(l);
}

Zilog 2-5

C-ISAM Zilog C-ISAM

}

mksalkey {) ;
cc = isaddindex(fdperform, &key);
if (cc != SUCCESS)

{
printf ("isaddindex error %d for perform\n", iserrno);
isclose(fdperform);
exit(l);
}

isclose(fdperform);

mklnamekey ()
{

key.k_flags = !SOUPS + COMPRESS;
key.k_nparts = O;
cstart = 4;
nparts = O;

addpart(&key, 20, CHARTYPE);

mksalkey {)
{

key.k_flags = ISDUPS;
key.k_nparts = O;
cstart = 12;
nparts = O;

addpart(&key, sizeof (double), DOUBLETYPE);

addpart (keyp, len, type)

register struct keydesc *keyp;
int len;
int type;
{

keyp->k_part[nparts] .kp_start = cstart;
keyp->k_part[nparts] .kp_leng = len;
keyp->k_part[nparts].kp_type =type;
keyp->k_nparts = ++nparts;
cstart += len;

Figure 2-3. Program to Add Secondary Indexes

2.6. Addi:ng Data

When a fil 1e is opened with the isopen function, the type of
operation that is to take place and the type o:E locking
desired mu.st be specified. These are the function's mode
parameter.

2-6 Zilog 2-6

C-ISAM Zilag

The three types of operations are:

ISINPUT - Read requests only
ISOUTPUT - Write requests only
ISINOUT Read and write requests

C-ISAM

Available locking options are discussed in the next section.

2.6.1. Reading and Locating Records:

Records are accessed with the isread function or the isstart
function. isread reads the record into the buffer, whereas
isstart only locates the record, but does not return it.

Both of these functions use a mode parameter, defined in
Table 2-1.

Table 2-1.

Mode

ISPIRS'r
IS LAST
ISNEXT
ISPREV
ISCURR
ISEQUAL

IS GREAT

ISG'rEQ

Mode Parameter For Isread and Isstart Functions

Description

Locate the first record
Locate the last record
Locate the next record
Locate the previous record
Locate the currept record
Locate the record
with key value equal to the

. specified value
Locate the record with key
value greater than the specified value
Locate the record with key value
greater or equal to the specified value

When ISEQUAL, ISGREA.T or ISGTEQ is specified, the call
searches for a record according to the value specified by
the user. With isread, it must be the current key. In the
case of isstart any key may be specified in the key descrip
tor parameter. It is the user's responsibility to place the
search value into the record buffer, at the location the
value is located in the record.

For example, if the primary key is a 3 byte character string
starting at offset 2 within the record, and the first record
to be accessed has the primary key value "ABC", the string
"ABC" must be located at offset 2 within the record buffer.

With isstart, partial key searches can be used. For exam
ple, to retrieve the first record with key value starting
with "A", put a single "A" at offset 2 with a specified

2-7 Zilog 2-7

C-ISAM Zilog C-ISAM

length of 1. This allows retrieving record "AAA" before
record "ABC".

If isread is used, and if manual locking is specified when
the file. is opened, the record can be locked by adding the
ISLOCK value to the mode. Refer to the next section.

2.6.2. Updating a File:

Inserting a record in a data file is accomplished with the
iswrite function. When the record is inserted, the indexes
for each of the keys (primary and secondaries) are updated.
An error message is issued if an attempt is made to insert a
record with a duplicate key value when the file does not
allow duplicate values.

When a record is rewritten (with the isrewrite or isrewcurr
functions) the existing record is replaced by the new one.
The value of the primary key cannot be changed during this
operation.

To change the value of a primary key, insert the record with
the new key value and delete the record with the old key
value.

The commands to update and delete records have two forms.
If the file has a unique primay key, use the isrewrite or
isdelete functions to add or delete a record. If the file
does not have a unique primary, locate the record using the
isread or isstart function and update it using the isrewcurr
or isdelcurr functions.

Figure 2-4 is a sample program that adds records to the
"employee" file by prompting standard input for values of
the fields in the data record. Note that the ~employee"
file is opened with the ISOUTPUT flag as its mode parameter.

2-8 Zilog 2-8

C-ISAM

2-9

Zilog C-ISAM

#include <isam.h>
#include <stdio.h>

#define WHOKEKEY 0
#define SUCCESS 0
#define TRUE 1
#define FALSE 0

char emprec[85];
char perfrec[Sl];
char line [82];
long empnum;

struct keydesc key;
int cstart, nparts;
int fdemploy, fdperform;
int finished = FALSE;

/*
*This program adds a new employee record to the employee file.
* It also adds that employee's first employee performance record
* to the performance file.
I

main()

{
int cc;

fdemploy =cc= isopen("employee", ISMANULOCK+ISOUTPUT);
if (cc < SUCCESS)

{
printf("isopen error %d for employee file\n", iserrno);
exit(l);
}

fdperform =cc= isopen("perform", ISMANULOCK+ISOUTPUT);
if (cc < SUCCESS)

{
printf("isopen error %d for performance file \n", iserrno);
exit(l);
}

getempl'oyee();
while (!finished)

{
addemployee();
getemployee();
}

isclose(fdemploy);
isclose(fdperform);

getperf orm ()

{
double new_salary;

if (empnum == 0)
{
finished = TRUE;
return(O);
}

stlong(empnum, perfrec);

Zilog 2-9

C-ISAM

2-10

Zilog

printf ("Start Date: ");
getline(line, 80);
stchar(line, perfrec+4, 6);

stchar("g", perfrec+lO, 1);

printf("Starting salary: "};
getline(line, 80);
sscanf(line, "%lf", &new_salary);
stdbl(new_salary, perfrec+ll};

printf("Title : "};
getline(line, 80);
stchar(line, perfrec+l9, 30);

printf("\n\n\n"};

addemployee (}

{
int cc;

cc
if

iswrite(fdemploy, emprec};
(cc I= SUCCESS)
{
printf("iswrite error %d for employee\n", iserrno);
isclose(fdemploy);
exit(l);
}

addperf orm ()

int cc;
cc= iswrite(fdperform, perfrec);
if (cc I= SUCCESS}

{
printf("iswrite error %d for performance\n", iserrno};
isclose(fdperform);
exit(l);
}

putnc(c, n)

char *c;
int n;·
{

while(n--} putchar(*(c++}};
}

getemployee (}

printf("Employee number (enter 0 to exit): ");
getline(line, 80);
sscanf (line, "%ld", &empnum};
if (empnum == 0)

{
finished = TRUE;
return(O);
}

stlong(empnum, emprec};

Zilog

C-ISAM

2-10

C-ISAM

2-11

printf("Last name: ");
getline(line, 80);

Zilog

st char (line, emprec+4, 20) ;

printf("First name: ");
getline(line, 80);
stchar(line, emprec+24, 20);

printf("AddrE:!SS: ") i
getline(line, 80);
st char (line, emprec+44, 20) ;

printf("City: ");
getline(line~ 80);
stchar(line, emprec+64, 20);

getperform() ;~
addperform() ;~

printf("\n\n\n");

getline(s, lim)
chars[];
int lirn;
{
int c, i;

{

C-ISAM

for (i=O; i<lirn-1 && (c=getchar()) l=EOF && cl='\n'; ++i)
s [i] =c;
if (c== '\n')

{
s [i] =c;
++ii

}
$ [i] : I \0 I j

return (i) ;

stchar(a,b,c)
char *a, *b;
int c;
{

register int i;

for (i=O;*a && (i < c); i++)
*b++ == *a++;

return(O);

Figure 2-4. Program to Add Data

Zilog 2-11

C-ISAM Zilog C-ISAM

2.1. Sequential Access

Figure 2-S shows how to read a file sequentially. In this
case, the "employee" file is being read in order of the pri
mary key 11 employee number". Since the "employeE:! number 11

index is defined as ascending with no duplicate key values
allowed, the sequence of records will print :from the lowest
value of employee number to the highest value of employee
number. rrhis continues until the isread function using
ISNEXT rE~turns a -1 with an EJ;:NDFILE value in the iserrno
field, indicating the end-of-file.

2-12

#include <isam.h>

#define WHOLEKEY 0
#define SUCCESS 0
#define TRUE 1
#define FALSE 0

char emprec[83];

struct keydesc key;
int cstart, nparts;
int fdemploy, fdperform;
int eof = FALSE;

/1.•
* This program sequentially reads through the
* employee file by employee number, printing each
* record to stdout as it goes.
"'/

main ()
{

ir.it cc;

fdemploy =cc= isopen{"employee", ISINPUT+ISAUTOLOCK);
if (cc < SUCCESS)

{
printf("isopen error %d for employee file\n", iserrno);
exit(l);
}

mkemplkey();
cc= issta~t(fdemploy, &key, WHOLEKEY, emprec, ISFIRST);
if (cc != SUCCESS)

{
printff"isstart error %d\n", iserrno);
isclose(fdemploy);
exit(l);
}

getfirst ();
while (1 eof)

{
showemployee();
getnext () ;
}

isclose(fdemploy);

show employee ()

printf("Employee number: %ld", ldlong(emprec)};
printf("\nLast name: "); putnc(emprec+4, 20);
printf("\nFirst name: "); putnc(emprec+24, 20)
printf("\nAddress: "); putnc(emprec+44, 20)
printf("\nCity: "); putnc(emprec+64, 20)
printf("\n\n\n");

2-12

C-ISAM Zilog

putnc(c, n)

char *c;
int n;
{

while(n--) putchar(*(c++)};

getf irst ()

{
int cc;

}

if (cc= isread(fdernploy, ernprec, ISFIRST))
{

switch (iser me>)
{
case EENDFILE: eof = TRUE;

break;
default::

{
printf("isread ISFinST error %d \n", iserrno);
eof == TRUE;
retuz:n (1) ;
}

}
return (0) ;

getnext ()

int cc;
if (cc= isread(fdernploy, ernprec, ISNEXT))

{
switch(iserrno)

{
case EENDFILE: eof = TRUE;

break;
default:

{
printf("isread ISNEXT error %d \n", iserrno);
eof =• TRUE;
return (1);
}

}
return(O);

rnkernplkey ()
{

C-ISAM

key. k_flags = O;
key.k_nparts = l;

/* no dups, no compression */
/* one part index */

key.k_part[O] .kp_start = O; /* offset is zero */
key.k_part[O] .. kp_type LONGTYPE; /* type long */
key.k_part[O] .kp_leng = 4; /* 4 bytes */

Figure 2-5. Program to Access File Sequentially

2-13 ziiog 2-13

C-ISAM Zilog C-ISAM

2.8. Rand1::>m Access

Figure 2-6 describes how random access to a C-ISAM file can
be accomplished. This program interactively retrieves an
employee number from standard input, searches for it in the
employee file, and prints the results of its search to stan
dard output. Note that the ISEQUAL macro is used to specify
the read mode to isread in the C function called "reademp".
If no record which corresponds to the value entered by the
user is :found with the employee number a condition code of
ENOREC is returned in iserrno and isread returns a -1. It
is the r•~sponsibility of the C progranuner to handle that
return code in an appropriate manner. If ENOREC is
returned, the record buffer sent as the record parameter to
the isread call will not have been changed (i.e. no record
will have been read).

2-14

#include <isam.h>
#include <stdio.h>

#define WHOLEKEY 0
#define SUCCESS 0
#define TRUE 1
:ft:def ine FALSE 0

char emprec[83];
lon9 empnum;

struct keydesc key;
int cstart, nparts;
int fdemploy, fdperform;
int eof = FALSE;

/*
*This program interactively retrieves an employee's
* employee number from stdin, searches for it in
* the employee file, and prints the employee
* record which has that value as its employee number
* field.
*/

main()

int cc;

fdemploy =cc= isopen("employee", ISINPUT+ISAUTOLOCK);
if (cc < SUCCESS)

{
printf("isopen error %d for employee file\n", iserrno);
exit(l);
}

mkemplkey () ;
getempnum () ;
while(empnum != 0)

{
if (reademp() SUCCESS) showemployee();
getempnum () ;
}

isclose(fdemploy);

Zilog 2-14

C-ISAM

2-15

Zilog

getempnum ()

char *line;

printf("Enter the employee number (zero to quit): ");
getline(line, 80);
sscanf (line, "%ld", &empnum);
stlong(empnum, emprec);

sh0wemployee ()

printf("Employee number: %ld", ldlong(emprec));
printf("\nLast name: "); putnc(emprec+4, 20};
printf("\nFirst name: "); putnc(emprec+24, 20)
printf("\nAddress: "); putnc(emprec+44, 20)
printf("\nCity: "); putnc(emprec+64, 20)
printf("\n\n\n");

putnc(c, n)

char *c;
int n;
{

while(n--) putchar(*(c++));
}

reademp ()

int cc;

cc = isread(fdemploy, emprec, ISEQUAL);
if (cc 1= SUCCESS)

{
switch(iserrno)

{
case EENDFILE:

{
eof = TRUE;
break;
}

default:
{
printf("isread ISEQUAL error %d \n", iserrno);
eof = TRUE;
rE~turn (1);
}

}
return(O);

Zilqg

C-ISAM

2-15

C-ISAM

mkempl key (}
{

key. k._flags = 0;
key.k_nparts = 1;

Zilog

/* no dups, no compression */
/* one part index */

key.k_part[O] .kp_start = O; /* offset is zero */

C-ISAM

key.k_part[O] .kp_type = LONGTYPE; /* type long */
key.k_part[O] .kp_leng = 4; /* 4 bytes */

getline (s, lim}
chars[];
int lim;
{

int c, i;

for (i=O; i<lim-1 && (c=getchar(}} !=EOF && c!='\n'; ++i)
s[i] =c;

if (c== 1 \n 1
) {

s [i J =c;
++i;
}

s[i] = '\O';
} return(i);

Figure 2-6. Program to Access File Randomly

2.9. Chaining

The following example shows how to chain to a record that is
the last record in a chain of associated records. An illus
tration of how the performance records appear logically by
the primary key follows. The primary index is a composite
index made! up of the employee number and review date.

Emp. no. Review date Job rating New Salary New Title
------·-- ----------- ----------- ----------- ----------

1 790501 g 20,000 PA
l 800106 g 23,000 PA
1 800505 f 24,725 PA
2 760301 g 18,000 JP
2 760904 g 20,700 PA
2 770305 g 23,805 PA
2 770902 g 27,376 SPA
3 800420 f 18,000 JP
4 800420 f 18,000 JP

2-16 Zilog 2-16

C-ISAM Zilog C-ISAM

The following program's function is to interactively add a
new performance file record. The record contains the date
that the salary review took place, the employee's current
job rating, the employee's new salary (based on rating), and
the employee's new or current job title. All the fields
except new salary are entered by the user. The new salary
is calculated by multiplying the employee's most recent
salary, .which can be found at the end of a "chain" of asso
ciated performance history records for that employee, by a
factor that depends upon that employee's job rating. To find
the most recent performance history record for a given
employee, the record pointer in C-ISAM is positioned to the
record inunediately after the highest possible review date
for that employee. In the example, every possible date is
smaller than 999999. To retrieve the most recent perfor
mance history record for that employee, an isread is exe
cuted with the ISPREV option as the mode parameter, This
technique is considerably faster than finding the first per
formance history record for a particular employee, and then
executing ISNEXTs to "chain" through them all.

2-17

#include <isarn.h>
#include <stdio.h>

#define WHOLEKEY 0
#define SUCCESS 0
#define TRUE 1
#define FALSE 0

char perfrec[Sl];
char operfrec[Sl];
char line [81] ;
long empnurn;
double .new_salary, old_salary;

struct keydesc key;
int cstart, nparts;
int fdemploy, fdperforrn;
int finished = FALSE;

/*
* This program interactively reads data from
* stdin and adds performance records to the
* "perform" file.
* Depending on the rating given the employee
* on job performance the following salary
* increases are placed in the salary field
* of the performance file.
*
* rating
* ------
* p (poor)
* f (fair)
* g (good)
*
*/

percent increase

o.o %
7.5 %
15.0 %

Zilog 2-17

C-ISAM
main()

Zilog

{
int cc;

fdperform = cc = isopen ("perform", ISINOUT+ISAUTOLOCK);
if (cc < SUCCESS)

{
printf("isopen error %d for performance file\n", iserrno);
exit(l);
}

mkperf key() ;
getperforrnance();
while(lfinished)

{
if (g1et_old_salary ())

{
f i.nished = TRUE;
}

else
{
addperformance() 1
getperformance();
}

isclose(fdperform);
}

addped ormance ()

int cc;

cc == iswrite (fdperform, perfrec);
if (cc 1= SUCCESS)

{
printf("iswrite error %d\n", iserrno);
isclose(fdperform);
e~<it(l);
}

getperf ormance ()

printf("Employee number (enter 0 to exit): ");
getline(line, 80);
sscanf (line, "%ld", &empnum);
if (empnum == 0)
{

finished = TRUE;
return(O);

stlong(empnum, perfrec);

printf("Review Date: ");
getline(line, 80);
stchar(line, perfrec+4, 6);

printf("Job Rating (p=poor, f=fair, g=good): ");
getline(line, 80);
stchar(line, perfrec+lO, l);

C-ISAM

printf("Salary After Review: (Sorry, you don't get to add this) \n");
new_salary = 0.0;

2-18

stdbl(new_salary, perfrec+ll);

printf("Title After Review: ");
getlinefline, 80);
stchar(line, perfrec+l9, 30);

printf("\n\n\n");

Zilog 2-18

C-ISAM

2-19

Zilog C-ISAM

get_old_salary ()

{ int mode, cc;
stchar(perfrec, operfrec, 4); /* get id number */
stchar("999999", operfrect4, 6); /*large$t possible

data */

cc isstart(fdperforrn, key, WHOLEKEY, operfrec,
ISGTEQ) ;

if (cc !=SUCCESS)

{
switch(iserrno)

{
case ENOREC:
case EENDFILE: mode = ISLAST;

break;
default: printf("isstart error %d ",iserrno);

}

printf("in get_old_salary\n");
return(l);

}
else

{
mode = ISPREV;
}
cc= isread(fdperform, operfrec, mode);
if (cc != SUCCESS)

{
pr intf ("isread error %d in get_old_salar~('',
iserrno);
return(l);
}
if (cmpnbytes(perfrec, operfrec, 4))

{
printf ("No performance record for employee number %ld.\n",
iserrno) ;
return(l);
}
else

{
printf("\nPerformance recotd found.\n\n");
old_salary = new_salary = lddbl(operfrec+ll);
printf ("Rating: ");
switch(*(perfrec+lO))

{
case 'p':

case 'f':

case 'g':

}

printf("poor\n");
break;

printf("fair\n");
new_salary *= 1.075;
break;

printf("good\n");
new_salary *= 1.15;
break;

stdbl(new_salary, perfrec+ll);
printf("Old salary was %f\n", old_salary);
printf ("New salary is %f\n", new_salary);
}

getl ine (s, lim)
char s [l ;
int lim;
{

int c, i;

for (i=O; i<lim-1 && (c=getchar()) !=EOF && c!='\n'; ++i)
s [il =c;

if (c== '\n')
s[i} =q
++i;

Zi.103 2-19

C-ISAM

2-20

Zilog C-ISAM

s[i] = '\0';
return(i);

mkperf key()
{

key.k_flags = O;
key.k_nparts = 2;

/* no dups, no compression*/

key.k_part[O] .kp_start O;
key.k_part[O] .kp_type = LONGTYPE;

/* offset is zero */
/* type~ long */

key.k_part[l] .kp_start = 4; /* offset is four */
key.k_part[l] .kp_type CHARTYPE; /* typ'~ char */
key.k_part[l] .kp_leng = 6; /* 6 bytes */

}
stchar(a,b,c)
char *a, *b;
i:nt c;
{

register int i;

for (i=O;*a && (i < c}; i++)
*b++ = *a++;

return(O);

cmpnbytes(a,b,c)
char *a, *b;
int c;
{

register int i;

for (i=O; i < c; i++)
if (*a++ 1= *b++)

return(!);
return. (0) ;

Figutre 2-7. Program to Interactively Add Rec!ord

Zilog 2-20

C-ISAM Zilog C-ISAM

SECTION 3
INDE:X COMPRESSION AND CHECKING

3.1. Introduction

Index compression, the ability to compress key values in an
index file to save~ space and enhance performance, and index
checking, the abiltiy to check and repair index files, are
the subject of Section 3.

3.2. Index Compression

C-ISAM can compress key values held in the index files,
using three types of compression: leading character compres
sion (LCOMPRESS), trailing character compression (TCOMPRESS)
and duplicate compression (DCOMPRESS). In addition to disk
space savings, key compression can improve real time
response to random access requests, by increasing the number
of key values which can be held in an index file page. With
more key values per index file page, fewer disk accesses are
neccessary to find any given data record. Since disk
accesses use the overwhelming percentage of real time during
file accesses, key compression in index files can improve
real time response. This improvement becomes more dramatic
as field size incrE~ases and wbere duplicate values, leading
duplicate characters, and trailing blanks become a large
percentage of the characters of the key. With the use of
leading compression alone, a savings of 5 percent in index
page size can result. Much more dramatic savings can result
if trailing blanks are compressed as well. Assuming a field
length of 20, the page size savings from using both
TCOMPRESS and LCOMPRESS is 67.5 percent.

There are some disadvantages to compression: LCOMPRESS and
TCOMPRESS each add one byte, DCOMPRESS adds two bytes, and
all three combined (COMPRESS) add four bytes to each index
entry.

Figures 3-1 through 3-3 illustrate LCOMPRESS, LCOMPRESS and
TCOMPRESS, and combined compression (LCOMPRESS, TCOMPRESS,
and DCOMPRESS.)

:3-1 Zilog 3-1

C-ISAM Zilog

Key Value Compressed with LCOMPRESS

Abbot Abbot•..
Able le
Acre ere it •••••••••••

Albert lbert
Albertson son
Morgan Morgan
McBride cBride
Mccloud C~loud
Richards Richards
Richardson on ••••••••••

200 bytes 180 bytes

* There is a one byte penalty for LCOMPRESSION

Figure 3-1. Leading Character Compression

Key Value

Abbot I •••••••••
Able di •••••••••

Acre •••• G ••••••••••••

Albert~ .•.............
Albertson
Morga~n ...•..........
McBride
Mccloud
Richards
Richardson

200 bytes

Compressed with LCOMPRESS
+

TCOMPRESS

Abbot
le
ere
lbert
son
Morgan
cBride
Cloud
Richards
on

135 bytes

C-ISAM

Bytes Saved

-1*
+l

0
0
5

-1
0
1

-1
6

10 bytes
5 %

Bytes Saved

13*
16
15
13
15
12
12
13
10
16

67.5%

* There is a two-byte penalty for using LCOMPRESS and
TCOMPRESS

Figure 3-·2. Leading and Trailing Character ComprE~ssion

3-2 Zilog 3-2

C-ISAM Zilog C-ISAM

The third compression method is duplicate compression
{DCOMPRESS.) When duplicate entries are allowed, DCOMPRESS
can be used to eliminate them. Fields holding city or state
values are often duplicate intensive. Figure 3-3 illus
trates duplicate compression combined with leading and
trailing character compression {COMPRESS).

Key Value

Abbot
Abbot
Abbot
Able · ·
Able
Acre
Albert
Albertson
Albertson
Morgan
McBride
Mccloud
Richards
Richardson
Richardson

300 bytes

Compressed with LCOMPRESS
+ TCOMPRESS
+ DCOMPRESS

Abbot
{no entry)
{no entry)
le
{no entry)
ere
lbert
son
{no entry)
Morgan
cBride
Cloud
Richards
on
(no entry)

46 bytes

Bytes Saved

11*
16
16
14
16
13
11
13
16
10
10
11

8
14
16

195 bytes
65 %

* COMPRESS {all thre 1e compression types) adds four bytes per
entry (with DCOMPRESS adding two of the four bytes)

Figure 3-3. Combined Compression

3-3 Zilog 3-3

C-ISAM Zilog C-ISAM

3. 3. IndE~X Checking

The bcheck program checks and repairs index files.. Bcheck
checks the consistency of the files which have the .dat or
.idx suffix. The options and syntax for bcheck are listed
below. If there seems to be a problem with corrupted
indexes, bcheck should be run on the suspect files.. Unless
the -n or -y option is used, bcheck is interactive and waits
for the user to respond to each error that is found. The -y
option should be used with caution. Bcheck should not be
run using the -y option if it is the first time the files
are being checked.

usage: bcheck -ilny cisamfiles
-i check index file only
-1 list entries in b-trees
-n answer no to all questions
-y answer yes to all questions

The following is an example of a bcheck run with no errors.
(Note that for each index a group of numbers is pr:Lnted out.
There can be up to eight groups of numbers f<::>r each index.
These numbers indicate the position of the kE~Y in each
record and are for use in reporting problems to Zilog.)

The command used for this bcheck run was:

bcheck sale.pros

BCHECK C-ISAM B-tree Checker version 1.00
Copyright {C) 1982, Relational Database Systems, Inc.
Software Serial Number 1

C-ISAM File: sale.pros.idx

* * ChE~ck Dictionary
** Check Data File Records
** Check Indexes and Key Descriptions
** Index 1 = unique key (0,4,2)
** Index 2 =unique key {10,2,1)
** Index 3 =unique key{62,35,0)
** Index 4 =duplicates {37,25,0)
** Index 5 =duplicates {264,20,0)
** Check Data Record and Index Node Free Lists
479 index node(s) used, 0 free -- 2638 data record(s) used, 0

The following is a sample run of bcheck where errors were
found.

3-4 Zilog 3-4

C·-ISAM Zilog C-ISAM

The -n option was used to answer no to all questions. The
command used was:

bcheck -n sale.ship.idx

SCHECK C-ISAM B-tree Checker version 1.00 Copyright
(C) 1982, Relational Database Systems, Inc. Software
Serial Number 1

C-ISAM File: sale.ship.idx

** Check Dictionary and File Sizes ** Check Data File Records
** Check Indexes and Key Descriptions ** Index 1 = unique
key (0,4,2)

ERROR: 12 bas data record(s) Delete index ? no

** Index 2 = duplicates (4,2,1)

ERROR: 12 bad data record(s) Delete index ? no

** Index 3 = duplicates (6,6,0)

ERROR: 12 bas data record(s) Delete index ? no

** Check Data Record and Index Node Free Lists

ERROR: 12 missing data record(s) Fix data record free
list ? no

5 index node(s) used, 0 free -- 0 data record(s) used,
12 free

In this case, ·the indexes must be deleted and rebuilt. To
correct these indexes, the -y option would be used to answer
yes to all questions asked by bcheck.

The command used to correct the errors was:

3-5

bcheck -y sale.ship.idx

BCHECK C-ISAM B-tree Checker version 1.00
Copyright (C) 1982, Relational Database Systems, Inc.
Software Serial Number 1

C-ISAM File: sale.ship.idx

** Check Dictionary and File Sizes
** Check Data File Records
** Check Indexes and Key Descriptions
** Index 1 = unique key (0,2,4)

Zilog 3-5

C-ISAM Zilog C-ISAM

3-6

ERROR: 12 bad data record(s)
Delete index ? yes

Remake index ? yes

** Index 2 =duplicates (4,3,1)

ERROR: 12 bas data record(s)
Delete index ? yes

Remake index ? yes

** Index 4 = duplicates (6,6,0)

ERROR: 12 bad data record(s)
Delete index ? yes

Remake index ? yes

** Check Data Record and Index Node Free Lists

ERROR: 12 missing data record(s)
Fix data record free list ? yes

** Recreate Data Record Free List
** Recreate Index 3
** Recreate Index 2
** Recreate Index 1

5 index node(s) used, 0 dree -- 0 date record(s) used,
12 free

Zilog 3-6

C-ISAM Zilog C-ISAM

SECTION 4
FILE AND RECORD LOCKING

4.1. Introduction

There are two levels of locking available from C-ISAM
file-level locking, and record-level locking. Within these
two levels, C-ISAM o:Efers several methods from which to
choose.

4.2. File Locking

File locking can be accomplished in two ways: exclusive file
locking and manual file locking.

4.2.l. Exclusive File Locking:

Exclusive file locking prevents other processes from either
reading from or writing to a given C-ISAM file. This lock
remains in effect from the moment the file is opened, using
isopen or isbuild, until the file is closed using isclose.
Exclusive file locking is specified by adding ISEXCLLOCK to
the mode parameter of the isolen or isbuild function call.
Exclusive file level locking s not necessary for most
situations, but it must be used when an index is being added
using isaddindex, or when an index is being deleted using
isdelindex. The sJceleton program shown below illustrates
how exclusive file lE~vel locking is done.

myfd = isopen("myfile", ISEXCLLOCK+ISINOUT):

is close (myfd):

4. 2. 2. Manual File JC..Ocking:

The manual file level locking method i~ referred to as a
"shared" lock. It prevents other processes from writing to
a given C-ISAM file, but allows other processes to read the
locked C-ISAM file. Shared file level locking is specified
with the islock and ~isunlock function calls (MODE ISINPUT

4-1 Zilog 4-1

C-ISAM Zilog C-ISAM

specified). When a C-ISAM file is to be locked in this
manner, C-ISAM must first be notified of the user's inten
tion to use manual locking. This is done by adding ISMANU
LOCK to t~he mode parameter of the isopen or isbuild call.
Later in the program, when locking is desired, 1slock should
be called to lock the file. When the file--is to be
unlocked, isunlock should be called.

myfd = isopen(11 myfile 11
, ISMANULOCK+ISINOUT);

. ("myfile" is unlocked in this section)

is lock (myfd) ;

. ("myfile" is locked in this section)

isunlock(myfd);

. ("myfile" is unlocked in this section)

is close (my f d) ;

4. 3 . ~ec~ord Locking

There are: two basic types of record level locking imple-
mented in C-ISAM Automatic and Manual.

Automatic record locking locks a record just before it is
read using the isread call. It unlocks the record after the
next C-IS:AM call has completed. Automatic record locking
locks one record at a time without regard to the! length of
time it i.s locked.

Manual record locking, on the other hand, can lock any
number of records. Manual locking locks a record when that
record is read using isread. It unlocks that record, and
any other records that are currently locked, when
isreleasEds called. Manual record locking is used when more
control -is required over when a record, or set of records,
is to be locked and unlocked.

Both automatic and manual locking techniques arE~ "shared"
locks. Other processes may read records locked by the
current process, but they may not lock or re-write them.

4-2 Zilog 4-2

C-ISAM Zilog C-ISAM

4. 3 .. 1. Automatic R1ecord Lockiµg:

Automatic record locking must be specified to C-ISAM when
the file is open1ed. This is done by adding ISAUTOLOCK to
the mode parameter of the isopen or isbuild function call.
From when the file is opened until it is closed, every
record will be locked automatically before it is read. Each
record remains lock1ed until the next C-ISAM function call is
completed for the current file. Therefore, while using the
automatic record locking mechanism of C-ISAM, only one
record per C-ISAM file can be locked at a given time. An
example of automatic record locking is shown below.

myfd = isopen(11 myfile 11
, ISINOUT+ISAUTOLOCK);

isread(myfd, myrecord, ISNEXT); /*record locked here*/

isrewcurr(myfd, myrecord);

is close (myfd);

/* before record is read */

/* record unlocked here */
/* after completion */

4.3.2. Manual Record Locking:

The user's intention to use manual record locking must be
specified before .any processing takes place. This is done
by adding ISMANULOCK to the mode parameter of isopen or
isbuild function calls when the file is opened. After the
file is open, if thie user wishes a record to be locked,
ISLOCK must be added to th~ mode parameter of the isread
function call which is reading that record. Each and every
record which is read in th;i.s manner remains locked until
they are all unlocked by a call of the isrelease function of
C-ISAM. The number of records which may be locked in this
manner at any one time is operating system dependent. The
following example shows how a number of records in a partic
ular file are locked and unlocked using manual record lock
ing.

4-3 Zilog 4-3

C-ISAM Zilog C-ISAM

myfd = isopen("myfile", ISINOUT+ISMANULOCK);

isread(myfd, first_record, ISEQUAL+ISLOCK);

isread(myfd, second_record, ISEQUAL+ISLOCK);

isread(myfd, third_record, ISEQUAL+ISLOCK);

isrelease(myfd); /* unlock all three records */

is close (myfd);

4-4 Zilog 4-4

C-ISAM Zilog

APPENDIX A
C-ISAM CALLS IN SUMMARY

C-ISAM

Appendix A summarizes the C-ISAM function calls, which are
described in detail in Section 3 of the System 8000 ZEUS
Reference Manual.

All calls to C-ISAM return either a 0 or -1 as the value of
the function and set the global integer iserrno to either 0
or an error indicator. In the case of isbuild and isopen,
the return value will be a legal C-ISAM file descriptor or a
-1. In the case of the other calls, the return value will
be a 0 or a -1. A -1 indicates that an error has occurred,
and iserrno has been set.

isbuild(filename, recordlength, keydesc, mode)
char *filename;
int recordlength;
struct keydesc *keydesc;
int mode;

isopen(filename, mode)
char *filename;
int mode;

isclose(isfd)
int isfd;

isaddindex(isfd, keydesc)
int isfd;
struct keydesc *keydesc;

isdelindex(isfd, keydesc)
int isfd;
struct keydesc *keydesc;

isstart(isfd, keydesc, length, record, mode)
int isfd;
struct keydesc *keydesc;
int length;
char record[];
int mode;

isread(isfd, record, mode)
int isfd;
char record[];
int mode;

A-1 Zilog A-1

C-ISAM

iswrite(isfd, record)
int isfd;
char record[];

isrewrite(isfd, record)
int isfd;
char record[];

isrewcurr(isfd, record)
int isfd;
char record[];

isdelete(isfd, record)
int isfd;
char record[];

isuniqueid(isfd, uniqueid)
int isfd;
long *uniqueid

Zilog

isindexinfo(isfd, buffer, number)
int isfd;
struct keydesc *buffer;
int number;

isaudit(isfd, filename, mode)
int isfd;
char *filename;
int mode;

iserase(filename)
char *filename;

islock(isfd) ·
int isfd;

isunlock(isfd)
int isf<i;

isrelease(isfd)
int isfd;

isrename(oldname, newname)

isld load routines

is st store value routines

A-2 Zilog

C-ISAM

A-2

C-ISAM Zilog C-ISAM

APPENDIX 8
ERROR MESSAGES AND STATUS BYTES

B.l. Error Messages

When a C-ISAM error occurs, iserrno can assume values rang
ing from 1 to 113. ZEUS errors range from 1 - 99 and C-ISAM
errors range from 100 - 113. ZEUS error codes that can
appear in errno can also appear in iserrno.

Table B-1 defines C-ISAM error codes.

Macro Number

EDU PL 100

ENOTOPEN HH

EBADARG 102

EBADKEY 103

ETOOMANY 104

EBADFILE 105

ENOTEXCL 106

B-1

Table B-1. C-ISAM Error Codes

Text

An attempt was made to add a
duplicate value to an index via
iswrite, isrewrite, isrewcurr or
isaddindex.

An attempt was made to perform
some operation on a C-ISAM file
that was not previously opened
using the isopen call.

Onie of the arguments of the C-ISAM
call is not within the range of

Status
Byte 1

2

9

acceptable vall.ues for that argument. 9

On•= or more of the elements that
make up the key description is
outside of th~ range of acceptable
values for that element. 9

The maximum number of files that
may be open at one time would be
exceeded if this request were
processed. 9

ThE:! format of the C-ISAM file has
beE:!n corrupted. 9

In order to add or delete an index,
th~:! file must have been opened with
exclusive access. 9

Zilog B-1

Status
Byte 2

2

0

0

0

C-ISAM

ELOCKED 107

EKEXISTS 108

EPRIMKEY 109

EENDFILE 110

ENOREC 111

ENOCURR 112

EFLOCKED 113

Zilog

The record or file requested by
this call cannot be accessed
because it has been locked by
another user.

An attempt was made to add an
index that has been defined
previously.

An attempt was made to delete
the primary key value. The
primary key may not be deleted
by the isdelindex call.

The beginning or end of file was
reached.

No record could be found that
contained the requested value in
the specified position.

This call must operate on the cur
rent record. One has not been de
fined.

The file is exclusively locked by
another user.

B.2. Status Bytes

C-ISAM

9

9

9

1

2

2

Two bytes (isstatl and isstat2) hold status information
after C-ISAM calls. The first byte (Table 8-2) holds status
information of a general nature, such as success or failure
of a C-ISAM call. The second byte (Table 8-3) contains more
specific information, which has meaning based on the status
code in byte one.

B-2 Zilog 8-2

3

1

C-ISAM Zilog C-ISAM

Table B-2. Status Byte One

Byte One Value Status

0
1
2
3
9

Status Byte
One

0 - 9

2

9

8-3

Successful Completion
End of File
Invalid Key
System Error
User Defined Errors

Table B-3. Status Byte Two

Status Byte Two

0 - No further information is available

2 - Duplicate key indicator

- After a READ indicates that the
key value for the current key is
equal to the value of that same key
in the next record.

- After a WRITE or REWRITE indicates
that the record just written created a
duplicate key value for at least one
alternate record key for which
duplicates are allowed.

1 - The primary key value has been changed
between the successful· execution of a READ
statement and the execution of the
next REWRITE statement.

2 - An attempt has been made to write or
rewrite a recotd that would create a
duplicate key in an indexed file.

3 - No record with the specified key can
be :found.

4 - An attempt has been made to write
beyond the externally defined
boundaries of an indexed file.

The value of status key two is defined
by the user.

Zilog B-3

C-ISAM Zilog

APPENDlX C
Data Types

C-ISAM

The types of data which can be defined and manipulated using
C-ISAM functions are described in this Appendix. Descrip
tions of how each data type is stored in data files and how
each data type must be treated are also discussed.

The data types for which C-ISAM can maintain properly
ordered indexes are character, 2 byte integer, 4 byte
integer, machine float (floating point), and machine double
(double precision floating point). The macro definitions
used to describe these types to C-ISAM are shown below.
These definitions can also be found in "isam.h".

CHARTYPE
INTTYPE
LONGTYPE
FLOA.PTYPE
DOUBLETYPE

C.l. CHARTYPE

character
2 byte integer
4 byte integer
machine float
machine double

The data type CHARTYPE signifies to C-ISAM that a particular
region of a data file consists of byte values from 0 to 255.
A typical example of data type CHARTYPE is a city name or an
address field.

c.2. INTTYPE and LONGTYPE

The data type INTTYPE and LONGTYPE consist of 2 and 4 byte
binary signed integer data. Integer data is always stored
in the data and index files as high/low, most significant
byte first, least significant byte last. This storage tech
nique is independent of the form in which integers are
stored on the System 8000, although there is no difference
between the integer and long formats used by C-ISAM and
their C language counterparts, except that the C-IS~M values
can be placed on non-word boundaries. Fnur ioutines are sup
plied to the user of C-ISAM for the conversion to and from
C-ISAM integer storage format.

ldint(p)

C-1

which returns a machine-format integer if p is a
char pointer to the starting byte of a C-ISAM-format

Zilog C-1

C-ISAM Zilog C-ISAM

2 byte integer;

stint(i, p)
which stores a machine-format integer i as a c
ISAM-format 2 byte integer at location p where p is
a char pointer to the first byte of a C-ISAM-format
2 byte integer;

ldlong(p)
w~hich returns a machine-format 4 byte inteiger if p
is a char pointer to the first byte of C-I:SAM-format
4 byte integer;

stlong(l, p)
which stores a machine-format integer i as a C
I SAM-format 4 byte integer at location p where p is
a char pointer to the first byte of a C-ISAM-format
4 byte integer;

The typical use for the above routines is after a C-ISAM
data record has been read into the user buffer. Integer
values which are to be used by the user program first have
to be converted to machine usable format by using ldint()
for type INTTYPE and ldlong() for LONGTYPE. This is shown
below.

int int machine;
long long machine;
char *p_cisam_int, *p_cisam_long;

int machine = ldint(p cisam int);
long_machine = ldlong(p_cisam_long);

Storage of machine-format integer data as C-ISAM-format
integer data requires the use of the stint() and stlong()
routines.

stint(int machine, p cisam int);
stlong(long_machine,-p_cisam_long);

Note that the C-ISAM formatted integers need not be aligned
along word boundaries as do machine formatte!d inte!gers.

C.3. FLOATTYPE and DOUBLETYPE

The Bata type FLOATTYPE and DOUBLETYPE are the twe> f loat.ing
point da.ta types. The data type FLOATTYPE is the same as
the C data type float while the data type DOUBLETYPE is the

C-2 Zilog C-2

C-ISAM Zilog C-ISAM

same as the C data type double. There is no difference
between the floatin9 point format used by C-ISAM and its
counterpart in thE~ C language except that C-ISAM floating
point numbers can be placed on non-word boundaries. Four
additional routines have been provided to the C-ISAM user to
retrieve or replace these non-aligned floating point numbers
from their positions in C-ISAM data records.

ldfloat(p)
which returns a machine-format float if p is a char
pointer to the starting byte of a C-ISAM-format
FLOATTYPE;

stfloat(f, p)

lddbl(p)

which stores a machine-format float f as a C-ISAM
format FLOATTYPE at location p where p is a char
pointer to the starting (leftmost) byte of a c
ISAM-format FLOATTYPE;

which returns a machine-format double if p is a char
pointer to the starting byte of a C-ISAM-format
DOUBLETYPE;

stdbl(d, p)
which stores a machine-format double d as a
format DOUBLETYPE at location p where p
pointer to the starting (leftmost) byte
ISAM-format DOUBLETYPE,

C-ISAM
is a char
of a c-

The use of the floating point load and store routines is
analogous to the usE~ of the integer load and store routines.

C·-3 Zilog C-3

C-ISAM Zilog C-ISAM

APPENDIX D
HEADER FILES

D.l. The Header File Isam.h

The C-ISAM header file, isam.h, contains defines that are
used for the mode arguments and also definitions of struc
tures that are used in the functions.

#define CHARTYPE
#define INTTYPE
#define LONGTYPE
#define FLOTYPE
#define DBLTYPE
#define MAXTYPE
#define ISDESC

#define ISFIRST
#define ISLAST
#define ISNEXT
#define ISPREV
#define ISCURR
#define ISEQUAL
#define ISGREAT
#define ISGTEQ

0
1
2
3
4
5
0200

0
1
2
3
4
5
6
7

/* is read lock modE!S * /
#define ISLOCK (1<<8}

/* position to first record */
/* position to last record */
/* position to next record */
/* position to previous record */
/* position to current record */
/* position to equal value */
/* position to greater value */
/* position to >= value */

/* lock record before reading

/* isopen, isbuild lock modes */

*/

#define ISAUTOLOCK (3<<8} /* automatic record lock */
#define ISMANULOCK (4<<8} /* manual record lock */
#define ISEXCLLOCK (5<<8} /* exclusive isam file lock */

#define ISINPUT
#define ISOUTPUT
#define ISINOUT

/* audit trail mode
#define AUDSETNAME
#define AUDGETNAME
#define AUDSTART
#define AUDSTOP

#define NPARTS

struct keypart

D-1

0
1
2

/* open for input only
/* open for output only
/* open for input and output

parameters */
0 /* set new audit trail name
1 /* get audit trail name
2 /* start audit trail
3 /* stop audit trail

*/
*/
*/

*/
*/
*/
*/

8 /* maximum number of key parts */

Zilog D-1

C-ISAM

{
int kp start;
int kp-leng;
int kp=type;
} i

struct keydesc
{
int k flags;
int k-nparts;
struct-keypart

k_.part[NPARTS];
} i

#define !SOUPS
#define DCOMPRESS
#define LCOMPRESS
#define TCOMPRESS
#define COMPRESS

struct dictinfo
{

001
002
004
010
016

int
int
int
long
} i

d.i nkeys;
di-recsize;
d.i-idxsize;
di=nrecords;

D-2

Zilog C-ISAM

/* starting byte of key part
/* length in bytes
/* type of key part

/* flags
/* number of parts in key

/* each key part

/* duplicates allowed
/* duplicate compression
/* leading compression
/* trailing compression
/* all compression

/* number of keiys defined
/* data record size
/* index record size
/* number of reicords in file

Zilog D-2

*/
*/
*/

*/
*/

*/

*/
*/
*/
*/
*/

*/
*/
*/
*/

C-ISAM Zilog

APPENDIX E
FILE FORMATS

DICTIONARY FORMAT

C-ISAM

Byte
Offsets

I 2 bytes - validation I
I value = FE53

2 !---
' 1 byte - number of reserved bytes at start of
I index record value = 2

3 !---
' 1 byte - number of reserved bytes at end of

index record value = 2

4 ---
! byte - number of reserved bytes per key entry

includes record number) value = 4
5 ---

1 byte - pointer type and length indicator
value = 4

6 -----------------------------·-----------------------------------
2 bytes - index file record length (excludes relative

file flag bytes) value = 511
8 ---

2 bytes - number of keys
10 ---

2 bytes - flags (see explanation of flags, next page)
value = 0

12 ---
1 byte - file version number

13 ---
2 bytes - data record length (excludes relative file

flag bytes)
15 ---

4 bytes - record number of first key information record
19 ---

6 bytes - reserved for future use
25 -----------------------------~-----------------------------------

4 bytes - record number of first data free space record
29 -----------------------------~-----------------------------------

4 bytes - record number of first index free space record
33 -----------------------------~-----------------------------------

4 bytes - record number of last record on data file
37 -----------------------------~-----------------------------------

E-1 z i log · E-1

C-ISAM Zilog C-ISAM

I 4 bytes - record number of last record on index file I

411---1
I 4 bytes - transaction number I

451---!
I 4 bytes - unique id I

491---:
I 4 bytes - pointer to audit trail information

E-2 Zilog E-2

C-ISAM

Byte
Offsets

Zflog C-ISAM

I

KEYDESCRIPTION FORMAT

2 bytes - number of bytes used in this node

2 ---
4 bytes - record number of continuation record

6 ---
2 bytes - length ·of description

8 ---
4 bytes - address of root node

12 ---
! byte - compressi.on flags

13 ---
2 bytes - length of key part 1 (top bit = dups))

)

15 ---) re-
2 bytes - position) peats

) for
17 ---) each

1 byte - type (0 = alphanumeric)) part
)

509 ---
' lJbyte - flag
I value = FF I

5101---1
I 1 byte - end of record flag - indicates record type I
I high bit is used for security value = 7E I

E-3 Zilog E-3

C-ISAM

Byte
Offsets

Zilog C-ISAM

TREENODE FORMAT

2 bytes - number of bytes used in this node

2 ---
! byte - count of leading bytes

3 ---
1 byte - count of trailing blanks

4 ---
N bytes - key

4+N ---
2 bytes - if needed for duplicates

6+Nf---
f 4 bytes - pointer (top bit may be used as a
I duplicates flag)

509 ---
! 1 byte - index tree number (this is always the
I second to the last byte in the node) I

5101---1
I l byte - level in tree (0 = leaf node) (this is I
I always the last byte in the node) I

E-4 Zilog E-4

)
)

)
)
)
) re-
) peats
) for
) each
) part
)
)
)
)

C-ISAM Zilog C-ISAM

FREELIST FORMAT

Byte
Offsets

2 bytes - number of bytes used in this node I
I I

2 1---1
I 4 bytes - record number of continuation record I
I I

6 1---1
I N bytes - space for up to 126 record numbers I
I I

509 ---------------------------~---------------------------
' 1 byte - FF indicates a free list for data file
I FE indicates a free list for index file I

5101---1
I 1 byte - end of record flag - indicates record typel
I high bit is used for security value = 7FI
---------------------------+---------------------------

E-5 Zilog E-5

C-ISAM Zilog C-ISAM

AUDITTRAIL NODE FORMAT

Byte
Off sets

2 bytes - number of bytes used in this node I
I I

2 1--1
I 2 bytes - flags 0 = audit trail is on I
I 1 = audit trail is off I

4 !---!
I 64 bytes - audit trail path name I
I I

509 ---
! 1 byte - end of record flag - indicates record type!
I high bit is used for security value = 7DI

E-6 Zilog E-6

Screen Updating and Cursor Movement Optimization:
A Library Package *

* This information is based on an article originally written
by Kenneth c. R. c. Arnold

CURSES Zilog CURSES

ii Zilog ii

CURSES Zilog CURSES

Preface

This document describes a package of C library functions
which allow the user to:

(1) update a screen with reasonable optimization,

(2) get input from the terminal in a screen-oriented
fashion, and

(3) independent from the above, move the cursor optimally
from one point to another.

These routines all us1e the /etc/termcap database to describe
the capabilities of the terminal.

iii Zilog iii

CURSES Zilog CURSES

iv Zilog iv

CURSES Zildg CURSES

Table of Contents

SECTION 1 SCREEN PACKAGE

1.1. Usage
1.1.1. Updating the Screen
1.1.2. Conventions•
1.1.3. Terminal Environment
1.1.4. Screen Initialization
1.1.5. Screen Scrolling
1.1.6. Screen Updating
1.1.7. Screen Input
1.1.8. Exit Processing
1.1.9. Internal Description

SECTION 2 CURSES FUNCTIONS

APPENDIX A EXAMPLE A

A. l.
A. 2.

Variables Set By setterm()•..
Variables Set By gettmbde()

APPENDIX B EXAMPLE B

v Zilog

1-1

1-1
1-2
1-2
1-3
1-4
1-4
1-5
1-5
1-5
1-6

2-1

A-1

A-1
A-2

B-1

v

CURSES Zilog CURSES

SECTION 1
SCREEN PACKAGE

With this package thE~ C programmer can do
type of terminal dependent functions;
optimization and optimal screen updating.

the most common
that is, movement

The package is split into three parts: (1) Screen updating;
(2) Screen updatin9 with user input; and (3) Cursor motion
optimization.

Screen updating and input can be done without using any pro
grammer knowledge of motion optimization or the database
itself. The motion optimization can be used without either
of the other two.

In this document, thee following terminology is used:

window: An internal representation containing any image
of what a section of the terminal screen can look like
at some point in time. This subsection can encompass
the entire terminal screen or any smaller portion down
to a single character within that screen.

terminal: Also called terminal screen, the current
image on the terminal's screen.

screen: A subset of windows as large as the terminal
screen. One of these, stdscr, is automatically pro
vided for the programmer.

1 • .1. Usage

In order to use the library, it is necessary to have certain
types and variables defined. Therefore, the programmer must
have:

#include <curses.h>

at the top of thie source program. The header file
<curses.h> includes <sgtty.h> and <stdio.h>. It is redun
dant {but harmless) for the programmer to define them again
in the source program.

Compilations must have the following form:

cc [flags] file ... -lcurses -ltermlib

1-1 Zilog 1-1

CURSES Zilog CURSES

1.1.1. Updating the Screen: A data structurE~ (WINDOW)
describes a window image to the routines, including its
starting position on the screen (the y, x of the upper left
hand corner) and its size. One of these structures, called
curscr {current screen), is a screen image of what is
currently on the screen. Another structure, stdscr {stan
dard screen) is provided by default for making changes.

A window is a purely internal representation. It is used to
build and store a potential image of a portion of the termi
nal screen. It doesn't bear any necessary relation to what
is really on the terminal screen. It is more like an array
of characters on which to make changes.

When a window describes what a part of a terminal should
look lilce, the routine refresh{) (or wrefresh{)) makes the
terminal,, in the area covered by the windowi, look like that
window. Changing something on a window does not change the
terminalo Actual updates to the terminal screen are made
only by calling refresh() or wrefresh(). This allows the
programmE!r to maintain several different ideas of how a por
tion of the terminal screen should look. Also, changes can
be made to windows in any order, without regard to motion
efficiency. Then, at will, the programmer can E!ffectively
say "makE~ it look like this" and the packagE~ takes the best
way to do it.

The routines can use several windows, but two are automati
cally given: curscr knows what the terminal looks like, and
stdscr knows what the programmer wants the terminal to look
like nE~xt. The user never accesses eurscr directly.
Changes are made to the appropriate screen~, and then the
routine Eefresh() (or wrefresh()) is called ..

1.1.2. Conventions: Many functions are set up to deal with
stdscr as a default screen. For example, to add a character
to stdscr, call addch {) with the desired charactE~r. If a
differenf window is to be used, the routine waddch() (for
window-specific addch()) is provided. The routir~addch()
is a 11 4~define" macro with arguments using stdscr as a
default. The convention of prepending function n~tmes with a
"w" when applied to specific windows is consistent. The
only routines that do not adhere to this convention are when
a window must be specified.

To move the current (y, x) from one point to another, the
routines move () and wmove () are provided.. HowEwer, it is
often desirable to first move and then perform the I/O
operation. Most I/O routine names can be preceded by the

1-2 Zilog 1-2

CURSES Zilog CURSES

prefix "mv" and the desired (y, x) coordinates are added to
the function arguments. For example, the calls

move (y, x);
addch (ch);

can be replaced by

and

mvaddch(y, x, ch);

wmove(win, y ,x);
waddch (win, ch) ;

can be replaced by

mvwaddch(win,y ,x ,ch);

Note the window description pointer, win, comes before the
added (y, x) coordinates. If win pointers are needed, they
are always the first parameters passed.

1.1.3. Terminal Environment: Many variables to describe
the terminal environment are available to the programmer.
They are:

Type Name

WINDOW *curscr

WINDOW *stdscr

char *Def term

bool My_term

char *ttytype

int LINES

int COLS

1-3

Description

current version of the
screen (terminal screen)

standard screen; most
updates are usually done here

default terminal type if
type cannot be determined

use the te~minal specifications
in Def term as terminal,
irrelev~of real terminal type

full name of current terminal

number of lines on the terminal

number of columns on the terminal

Zilog 1-3

CURSES

int ERR

int OK

Zilog

error flag returned by routines
on a fail

error flag returned by routines
when successful

CURSES

There arE~ also several 11 #define 11 constants a.nd types which
are useful:

rE~g

bool

TRUE

FP~LSE

storage class "register" (for example,
reg int;)

boolean type, actually a 11 char 11

(for example, boo! doneit;)

boolean 11 true 11 flag (1)

boolean "false" flag (0)

1.1.4. Screen Initialization: To use the screen .package,
the routines must know about terminal chc:1racteristics and
the space! for curscr and stdscr must be allocate!d. These
functions are performed by initscr(). Since it must allo
cate space for the windows, it can overflow core when
attempting to do so. When this occurs, initscr{) returns
ERR. The routine initscr() must be called before· any rou
tines which affect windows are used. If not, the program
will core: dump as soon as either curscr or stdscr are refer
enced. Terminal status changing routines, like nl{) and
crmode(), should be called after initscr(). ~

1.1.S. S:creen Scrolling: When the screen windows have been
allocated, they can be set up for the run. To allow the
window to scroll, use scrollok(). For the cursor to be left
after the last change, use leaveok(). Otherwise, refresh
moves the cursor to the window's current (y, x) coordinates
after updating it. New windows are created by ne!wwin () and
subwin(). The routine delwin() gets rid of old windows. To
change the official size of the terminal by hand, set the
variables LINES and COLS, and then call initscr(). This is
best done before the first call to initscr(), but can be
done after, as initscr() deletes any existing stds.£E_ and/or
curscr before creating new ones.

1-4 Zilog 1-4

CURSES Zilog CURSES

1.1.6. Screen Updating: The basic functions to change what
goes on a window are addch,() and move () . The routine
addch() adds a character at the current (Y;- x) coordinates
returning ERR if it would cause the window to scroll ille
gally (print a character in the lower right hand corner of a
terminal which automatically scrolls if scrolling is not
allowed).

The routine move() changes the current (y, x) coordinates.
If move() causes the new coordinates to move off the window
when scrolling is not allowed, ERR is returned. As men
tioned in section 1.1.2, the two can be combine into
mvaddch() to do both in one fu~ction call.

The other output functions, such as addstr() and printw{),
call addch() to add characters .to the window.

After the window is modified as desired, call refresh() to
display it. To optimize finding changes, refresh() assumes
that any part of the! window riot changed since the last
refresh of that window has not ,been changed on the terminal;
that is, a portion of the terminal has not been refreshed
with an overlapping window. Otherwise, the routine
touchwin() is provided to cause the ·entire window to be
changed, making refresh() check the whole subsection of the
terminal for changes.

If wrefresh() is called with curscr, the current screen is
displayed. This is useful for implementing a command to
redraw the screen if necessary.

1.1.7. Screen Input: Input i~ essentially a mirror image
of output. The complementary function to addch() is getch()
which, if echo is sE~t, calls addch() to echo the entire
character. If the terminal is not in raw or cbreak mode,
getch() sets it to cbreak, and reads in the character.

1,1.8. Exit Processing: To do certain optimizations, some
things must be done before the screen routines start up.
These functions are performed in gettmode() and setterm(),
which are called by initscr()~ The routine endwin() cleans
up after the routines. It res~ores the terminal modes to
what they were when initscr was first called. Thus, anytime
after the call to initscr(), endwin() must be called before
exiting.

1-5 Zilog 1-5

CURSES Zilog CURSES

1.1.9. Internal Description: The cursor optimization func
tions of this screen package can be used without the over
head and additional size of the screen updating functions.
The screen updating functions are used where parts of the
screen are changed but the overall image remains the same.
Graphics programs, designed to run on character-oriented
terminals find it difficult to use these functions without
considerable unnecessary program overhead. A certain amount
of familiarity with programming problems and some finer
points of C is assumed to understand the following descrip
tion of the happenings at the lower levels.

The /etc/termcap database describes a terminal's features,
but a certain amount of decoding is necessary. The algo
rithm used is from vi. It reads the terminal capabilities
from /etc/termcap in a tight loop into a set of variables
whose names are two uppercase letters with some mnemonic
value. Por example, HO is a string which moves the cursor
to the "home" position.-See Appendix A for a complete list
of those capabilities read and termcap (5) for a full
description.

There· ar•a two routines to handle terminal 1;etup in
initscr(). The first, gettmode, sets some variables based
upon the terminal modes accessed by ~ and ~;tty (see
ioctl(2)). The second, setterm(), reads in the descriptions
from the /etc/termcap database. The following example shows
how these routines are used.

if (i~;atty(0))
{

}
else

9ettmode();
if (sp=getenv("TERM"))

set term (sp);

setterm(Def term);
puts (TI); -

=puts(VS);

isatty() determines if file descriptor 0 is a terminal. It
does ·a qtty on the descriptor and checks the return value.
gettmode (~I then sets the terminal modes from a .9_:!:ty call.
The routine getenv{) is then called to get the name of the
terminal. A pointer to a string containing the terminal
name is returned, which is saved in the characte~r pointer
.!£1 and ie1 passed to setterm(). The routine setterm{) then
reads in the capabilities associated with that terminal from
/etc/termc:ap.

1-6 Zilog 1-6

CURSES Zilog CURSES

If isatty() returns false, the default terminal Def term is
used. The TI and VS sequences initialize the terminal by
calling puts~this macro uses tputs() (see termlib (3)) to
put out a string. The routine endwin() undoes the previous
operations.

The most difficult thing to do properly is motion optimiza
tion. When considE~ring how many different features various
terminals have (tabs, backtabs, non-destructive space, home
sequences, absolute tabs, .•.) it can be a decidedly non
trivial task to decide how to get from here to there. The
editor vi uses many of these features and the routines it
uses take up many pages of code. Fortunately, these rou
tines are available here.

After using gettmodc~ () and set term() to get the terminal
descriptions, the function mvcur() deals with this task.
Its usage is simple: tell it where it is now and where to
go. For example:

mvcur(0, 0, LINgS/2, COLS/2)

moves the cursor from the home position (0, 0) to the middle
of the screen. To force absolute address·ing, use the func
tion tgoto() from the termlib(3) routines or notify mvcur()
that the cursor is positioned elsewhere. For example, to
absolutely address the lower left hand corner of the screen
from anywhere, just claim to be in the upper right hand
corner:

mvcur(0, COLS-1, LINES-1, 0)

1-7 Zilog 1-7

CURSES Zilog

SECTION 2
CURSES FUNCTIONS

CURSES

In the following definitions, 11 [*] 11 means that the function
is really a "#define" macro with arguments (found in
/usr/include/curses.h). This means it does not show up in
stack traces in the debugger or, in the case of such func
tions as addch(), it shows up as its "w" counterpart. The
arguments are given to show the order and type.

addch(ch) [*]
char ch;

waddch(win, ch)
WINDOW *win;
char ch;

adds the character ch on the w~ndow at the current (y, x)
coordinates. If th.e character is a newline ('\n') and new
line mapping is on, the line is cleared to the end and the
current (y, x) coordinate is changed to the beginning of the
next line. If newline mapping is off, the line is cleared
to the end and the~ coordinate is changed. A return (1 \r 1

)

moves to the beginning of the line on the window. Tabs
('\t') are expanded into spaces in the normal tabstop posi-
tions of every eight character$. This returns ERR if it
would cause the scre~en to scrolrl i !legally.

addstr(str) [*]
char *str;

waddrstr(win, str)
WINDOW *win;
char *str;

adds the string, str, on the window at the current (y, x)
coordinates. This-returns ERR if it would cause the screen
to scroll illegally.. In this case, addstr puts on as much
as it can.

box(win, vert, hor)
WINDOW *win;
char vert, how;

draws a box around the window µsing vert as the character

2-1 Zilog 2-1

CURSES Zilog CURSES

for drawing the vertical sides, and hor for drawing the hor
izontal lines. If scrolling is not allowed and the window
encompasses the lower right hand corner of the terminal, the
corners are left blank to avoid a scroll.

clear() [*]

wclear(win)
WINDOW *win;

resets the entire window to blanks. If win is a screen,
this sets the clear flag which causes a clear-screen
sequence to be sent on the next refresh call. This also
moves the current (y, x) coordinates to (0, 0).

clear,ok (scr, bool f) [*]
WINDOW *scr;
bool boolf;

sets the 1clear flag for the screen scr. If boolf is TRUE,
this forces a clear-screen to be printed on the next
refresh, c:>r stops it from doing so if boolf is FALSE. This
only work:; on screens, and, unlike clear, does not alter the
contents <:>f the screen. If scr is curscr, the next refresh
call causes a clear-screen even if the window passed to
refresh is not a screen.

clrtobot() [*]

wclrt()bot(win)
WINDOW *win;

clears thE~ window from the current (y, x) coordinates to the
bottom. This does not force a clear-screen sequence on the
next refrE~sh. There is no associated "mv" command,,

clrtoE~o1 () [*]

wclrtoeol(win)
WINDOW *win;

clears thE! window from the current (y, x) coordinates to the
end of the! line. There is no associated "mv" command.

2-2 Zilog 2-2

CURSES

crmode() [*]

nocrmode () [*]

Zilog

sets or unsets the terminal to/from cbreak mode.

delch()

wdelch(win)
WINDOW *win;

CURSES

deletes the character at the current (y, x) coordinates.
Each character after it on the line shifts to the left, and
the last character becomes blank.

deleteln()

wdeleteln(win)
WI.NDOW *win;

deletes the current line. Every line below the current one
will move up, and the bottom line becomes blank. The
current (y, x) coordinates remain unchanged.

delwin(win)
WINDOW *win;

deletes the window from exist~nce. All resources are freed
for future use by c:alloc (see malloc(3)). If a window has a
subwin(} allocated window ins~de it, and the outer window is
deleted, the subwindow is not .affected even though this does
invalidate it. The~refore, subwindows must be deleted before
their outer windows are.

echo(} [*]

noecho() [*]

sets the terminal to echo or not echo characters.

endwin()

finishes up window routines before exits and restores the
terminal to the state it was before initscr() (or gettmode(}
and setterm(}) was called. It should always be called
before exiting. This is especially useful for resetting

2-3 Zilog 2-3

CURSES Zilog CURSES

terminal ,status when trapping rubouts via signal (2).

erase() [*]

werasce (win)
WINDOW *win;

erases the~ window to blanks without setting the clf:?ar flag.
This is analogous to clear(), except that it never causes a
clear-screen sequence to be generated on a refresh(). There
is no associated "mv" command.

getch() [*]

wgetcb(win)
WINDOW *win;

gets a character from the terminal and (if necessary) echos
it on the window. This returns ERR if it would cause the
screen to scroll illegally. Otherwise, the character is
returned. If noecho is set, the window is left unaltered.
In order to retain control of the terminal, it is necessary
to have noecho, cbreak, or rawmode set. If not, whatever
routine called to read characters sets cbreak mode and
resets to the original mode when finished.

getstr(str) [*]
char '*'str;

wgetstr(win, str)
WINDOW *win;
char '*'str;

gets a string from the window and put it in the ·location
pointed to by str. It sets terminal modes if necessary, and
calls getch (or wgetch(win)) to get the characters need.ed to
fill in the string until a newline or EOF is encountered.
The newline is stripped off the string. This returns ERR if
it would cause the screen to scroll illegally.

gettmode()

gets the terminal modes.
initscr.

getyx(win, y, x) [*]

2-4

This is normally called by

Zilog 2-4

CURSES

WINDOW
int

*win;
y I Xi

Zilog CURSES

puts the current (y, x) coordinates of win in the variables
y and x. Since it is a macro, not a function, the address
of y and ~ is not passed.

inch() [*]

winch(win) [*]
WINDOW *win;

returns the character at the cu~rent {y, x) coordinates in
the given window. This doe$ not make any changes to the
window. There is no associated "mv 11 command.

initscr()

initializes the screen routines. This must be called before
any screen routines are used. It initializes the terminal
type data and without it, none 9f the routines can operate.
If standard input is not a ter~inal, it sets the specifica
tions to the terminal whose name is pointed to by Def term
(initially "dumb"). If the Boolean My term is true,
Def term is always used.

insch(c)
char c;

winsch(win, c)
WINDOW *win;

inserts c at the current (y, x) coordinates. Each character
is shifted to the right and the last character disappears.
This returns ERR if it would cause the screen to scroll
illegally.

insertln()

winsertln(win)
WINDOW *win;

inserts a line above the curreqt one. Every line below the
current line is shifted down, and the bottom line disap
pears. The current line becomes blank, and the current (y,
x) coordinates remain unchanged. This returns ERR if it
would cause the screen to scroll illegally.

2-5 Zilog 2-5

CURSES

leavEM>k(win, boolf) [*]
WINDOW *win;
boo! boolf:

Zilog CURSES

sets the Boolean flag for leaving the cursor after the last
change. If boolfdf is TRUE, the cursor is left after the
last updctte on the terminal, and the current (y, >c) coordi
nates for win are changed accordingly. If PALSE, the cursor
is moved to the current (y, x) coordinates. This flag (ini
tially F.A~LSE) retains it value until changed by the user.

longlllame(termbuf, name)
char *termbuf, *name;

fills in name with the full name of the terminal described
by the termcap entry in termbuf. This is availa.ble in the
global variable ttytype. Termbuf is usually set via the
termlib routine tgetent().

move (y, x) [*]
int y, x;

wmove(win, y, x)
WINDOW *win;
int YI Xi

changes the current (y, x) coordinates of the window to (i:_,
x). This returns ERR if it would cause the screen to scroll
illegally.

mvcur(lasty, lastx, newy, newx)
int lasty, lastx, newy, newx;

moves the terminal's cursor f from (lasty, lastx) to (~,
newx) in an approximation of optimal fashion. It is possi
ble to us•e this optimization without the benefit of the
screen routines. With the screen routines, this :should not
be called by the user. Move and refresh should be used to
move the cursor position,90 that the routines area aware of
the movemE:mt. This routine uses the functions borrowed from
the ex editor.

mvwini(win, y, x)
WINDOW *win;
int Yi• Xi

moves the home position of the window win from its current

2-6 Zilog 2-6

CURSES Zilog CURSES

starting coordinates to (y, x). If that would put part or
all of the window off the edge of the terminal screen,
mvwin() returns ERR and does not change anything.

nl () [*]

non1() [*]

sets or unsets the terminal to/from nl mode, i.e.,
start/stop the system from mapping <RETURN> to <LINE-FEED>.
If the mapping is not done, refresh can do more optimiza
tion, so it is reconunended, but not required, to turn it
off.

overlay(winl, win2)
WINDOW *winl, *win2;

overlays winl on win2. The contents of winl, (as much as
will fit)-;-are plac-E~d on win2 &t their starting (y, x) coor
dinates. This is done non-destructively, i.e., blanks on
winl leave the contents of the space on win2 untouched.

overwrite{winl, win2)
WINDOW *winl, *win2;

overwrites winl on win2. The contents of winl, (as much as
will fit), are placc~d on win2 at their starting (y, x) coor
dinates. This is done destructively (blanks on winl become
blank on win2) .

printw{fmt, argl, arg2, ...)
char *fmt;

wprintw(win, fmt, argl, arg2, ...)
WINDOW *win;
char *fmt;

performs a printf on the window starting at the current {y,
x) coordinates. It uses addstr to add the string on the
window. It is often advisable to use the field width
options of printf to avoid leaving things on the window from
earlier calls. This returns ERR if it would cause the
screen to scroll illegally.

2-7 Zilog 2-7

CURSES Zilog

CURSES Zilog

WINDOW *

newwin(lines, cols, begin y, begin x}
int lines, cols, begin_y,-begin_x;-

CURSES

CURSES

creates a new window with lines lines and col:s columns
starting at position (begin y, begin x}. If either lines or
cols is 0 (zero}, that dimension is set to (LINES ·- begin y}
Or(COLS ·- begin x} respectively. Thus, to get a new window
of dimension LINES x COLS, use newwin(0, 0, 0, 0).

WIND01;t *

subwiin(win, lines, cols, begin y, begin x}
subwin(win, lines, cols, begin-y, begin=·x}
WINDOW *win;
int lines, cols, begin_y, begin_x;

creates a new window with lines lines and cols columns
starting ,at position (begin y, begin_x} in the middle of the
window win. Any change made to either window in the area
covered b:~ the subwindow is made to both windows. The coor
dinates]begin y, begin_x are specified relative to the
overall screen, not the relative (0, 0) of win. If either
lines or col is 0 (zero}, that dimension is set tQ (LINES -
begin_y} 1or(COLS - begin_x} respectively.

'

CURSES Zilog CURSES

APPENDIX A
I

EXAMPLE A

The following is only a summary of the capabilities. For a
full description of terminals, see termcap(5).

Capabilities from termcap are of three kinds: string valued
options, numeric valued option, and Boolean options. The
string valued options are the most complicated, since they
can include padding information.

Intelligent terminals often require padding on intelligent
operations at high (and somet1mes even low) speed. This is
specified by a number before the string in the capability,
and has meaning for the capabilities which have a P at the
front of their comment. This ~s normally a number of mil
liseconds to pad the operation. In the current system,
which has no true programmable delays, we do this by sending
a sequence of pad characte.rs (normally nulls, but can be
changed (specified by PC)). In some cases, the pad is
better computed as some number of milliseconds times the
numbe~ of affected lines (to the bottom of the screen except
when terminals have insert ~odes which will shift several
1 i n es) • Th is is spec i f i e d as , e • g • " 12 * " , be f o re the cap a -
bility, to say 12 milliseconds. per line. Capabilities where
this makes sense have "P*" des,ignated.

A.I. Variables Set By setter~()

Type Name

char * AL
bool AM
char * BC
bool BS
char * BT
bool CA
char * CD
char * CE
char * CL
char * CM
char * DC
char * DL
char * OM
char * DO

A-1

Pad

P*

p

P*
p

P*
p
P*
P*

Description

Add new blank Line
Au tom at i.c Margins
Back Cursor movement
Backspace works
Back Tab
Cursor ~ddressable
Clear to end of Display
Clear tq End of line
Clear sc.reen
Cursor Motion
Delete Character
Delete ~ine sequence
Delete Mode (enter)
DOwn line sequence

Zilog A-1

CURSES

Type

char *
bool
char *
char *
bool
char *
bool
char *
char *
char *
char *
bool
bool
char *
bool
char
char *
char *
char *
char *
char *
char *
char *
char *
char *
bool
char *
char *
char *
char *
char *
bool

Name

E:D
E:O
E:I
HO
HZ
IC
IN
IM
IP
LL
MA
MI
NC
ND
OS
PC
SE
SF
so
SR
'I'A
'l~E

'I'I
UC
UE
UL
UP
us
VB
VE
vs
XN

Pad

p

P*

p

p
p

Zilog

Description

End Delete mode
can Erase Overstrikes with ' '
End Insert mode
HOme cursor
Hazeltine - braindamage
Insert Character
Insert-Null blessing

CURSES

enter Insert Mode (IC usually set, too)
Pad after char Inserted using IM+IE
quick to Last Line, column 0
ctrl character MAp for cmd mode
can Move in Insert mode
No Cr: \r sends \r then eats 0
Non-Destructive space
Overstrike works
Pad Character
Standout End (may leave space)
Scroll Forwards
Stand Out begin (may leave space)
Scroll in Reverse
TAb (not I or with padding)
Terminal address enable Ending sequence
Terminal address enable Initialization
Underline a single Character
Underline Ending sequence
Underlining works even though !OS
UPline
Underline Starting sequence
Visible Bell
Visual End sequence
Visual Start sequence
a Newline gets eaten after wrap

A. 2. Vari~ables Set By gettmode {)

bool
bool
bool

Name

NONL
GT
UPPERCASE

Description

Term can't hack linefeeds doing a CR
Gtty indicates Tabs
Terminal generates only uppercase letters

If US and UE do not exist in the termcap entry, they are
copied from SO and SE in setterm(). Names start:Lng with X
are reserved fdr unusual circumstances.

A-2 Zilog A-2

CURSES Zilog

APPENDlX B
EXAMPLE B

The WINDOW structure is defined as follows:

define

struct winst {
short
short
short
short
bool
bool
bool
char
short
short

} ;

WINDOW

_cury,_curx;
maxy, maxx;

-begy,-begx;
-flags;
-clear;
-leave;
-scroll;
** y;
* f irstch;
*-lastch;

struct

CURSES

win st

cury and curx are the current (y, x) coordinates for the
window. New characters added to the screen are added at
this point.

maxy and maxx are the maximum values allowed for (cury,
curx).

begy and begx are the starting (y, x) coordinates on the
terminal for the window, that is, the window's home.

Note that cury, curx, maxy and maxx are measured rela
tive to (begy, beg.if, not the terminal's home.

flags can have one or more of the following values "or'd"
into it.

#define
#define
#define
#define
#define

-SUBWIN
ENDLINE

-FULLWIN
-SCROLJLWIN
=sTANDOUT

01
02
04

010
0200

SUBWIN means that the window is a subwindow, which indi
cates to delwin() that the space for the lines is not to be
freed.

B-1 Zilog B-1

CURSES Zilog CURSES

ENDLINE :says that the space for the lines is not to be
freed. :~ULLWIN says that this window is a screen.

SCROLLWIN indicates that the last character of this screen
is at thca lower right-hand corner of the terminal; that is,
if a char<:icter is put there, the terminal will scroll.

STANDOUT says that all characters added to the screen are
in standout mode.

clear tells if a clear-screen sequence is to be generated
on the next refresh() call. This is only meaningful for
screens. The initial clear-screen for the first refresh()
call is generated by initially setting clear to be TRUE for
cursor, which always generates a clear-screen if set,
irrelevant of the dimensions of the window involved.

leave is TRUE if the current (y, x) coordinates and the
cursor are to be left after the last character changed on
the terminal, or not moved if there is no change.

scroll ie5 TRUE if scrolling is allowed.

J_ is a pc>inter to an array of lines which describE~ the ter
minal. Thus:

_y[i]

is a pointer to the ith line.

firstch represents the first character position in a line
to be changed during a refresh () . This po~;i tion is stored
in

firstch[i]

for the ith line.

lastch re!presents the last character position in cl line to
be changed during a refresh(). This position is stored in

lastch[i]

for the ith line.

B-2 Zilog B-2

CURSES Zilog CURSES

starting coordinates to (~, ~). If that would put part or
all of the window off the edge of the terminal screen,
mvwin() returns ERR and does not change anything.

nl () [*]

nonl() [*]

sets or unsets the terminal to/from nl mode, i.e.,
start/stop the system from mapping <RETURN> to <LINE-FEED>.
If the mapping is not done, refresh can do more optimiza
tion, so it is recommended, but not required, to turn it
off.

overlay(winl, win2)
WINDOW *winl, *win2;

overlays winl on win2. The contents of winl, (as much as
will fit):-are placed on win2 ~t their starting (y, x) coor
dinates. This is done non-destructively, i.e., blanks on
winl leave the contents of the space on win2 untouched.

overwrite(winl, win2)
WINDOW *winl, *win2;

overwrites winl on win2. The contents of winl, (as much as
will fit), are placied on win2 at their starting (y, x) coor
dinates. This is done destructively (blanks on winl become
blank on win2) .

printw(fmt, argl, arg2, ...)
char *fmt;

wprintw(win, fmt, argl, arg2, .•.)
WINDOW *win;
char *fmt;

performs a printf on the window starting at the current (y,
x) coordinates. It uses addstr to add the string on the
window. It is often advisable to use the field width
options of printf to avoid leaving things on the window from
earlier calls. This returns ERR if it would cause the
screen to scroll illegally.

2-7 Zilog 2-7

CURSES Zilog CURSES

raw() [*]

noraw() [*]

sets or unsets the terminal to/from raw mode.
turns off newline mapping (see nl()).

~rhis also

refre~;h () [*]

wfresh(win)
WINDOW *win;

synchronb~es the terminal screen with the
If the window is not a screen, only the
updated~ This returns ERR if it would cause
scroll illegally. In this case, it updates
without cetusing the scroll.

savetty() [*]

resetty() [*]

desired window.
part covered is
the screen to
whatever it can

savetty() saves the current terminal characteristic flags.
resetty() restores the flags to what sc:tvetty() stored.
These functions are performed automatically by init~() and
endwin().

scanw(fmt, argl, arg2, ...)
char *fmt;

wscanw(win, fmt, argl, arg2, ...)
WINDOW *win;
char *fmt;

performs a scanf from the window using fmt. It does
using consecutive getch()'s (or wget"ch(win)'s).
returns ERR if it would cause the screen to scroll
gally.

scroll(win)
WINDOW *win;

this
This

ille-

scrolls the window upward one line. This is normally not
used by the user.

scroll•ok(win, boolf) [*]

2-8 Zilog 2-8

CURSES

WINDOW *win;
bool boolf;

Zilog

sets the scroll flag for the given
FALSE, scrolling i:s not allowed.
ting.

setterm(name)
char *name;

CURSES

window. If boolf is
This is its default set-

sets the terminal characteristics to be those of the termi
nal named name. This is normally called by initscr().

standout() [*]

wstandout(win)
WINDOW *win;

standend() [*]

wstandend(win)
WINDOW *win;

starts and stops putting characters onto win in standout
mode. The routine standout() causes any characters added to
the window to be put in standout mode on the terminal (if it
has that capability) and standend() stops this. The
sequences SO and SE (or US and UE if they are not defined)
are used (see Appendix A):'"

touchwin(win)
WINDOW *win;

makes it appear that every location on the window has been
changed. This is usually only needed for refreshes with
overlapping windows.

2-9 Zilog 2-9

CURSES Zilog

WINDOlf *

newwill(lines, cols, begin y, begin x)
int lines, cols, begin_y,-begin_x;-

CURSES

creates a new window with lines lines and cols columns
starting at position (begin y, begin x). If either lines or
cols is 0 (zero), that dimension is set to (:LINES ·- begin y)
or(COLS -- begin x) respectively. Thus, to get a new window
of dimension LINES x COLS, use newwin(0, 0, 0, 0).

WIND01f *

subwin(win, lines, cols, begin y, begin :K)
subwin(win, lines, cols, begin y, begin=:x:)
WINDOW *win;
int lines, cols, begin_y, begin_x;

creates a new window with lines lines and cols columns
starting at position (begin y, begin_x) in the midcile of the
window win. Any change made to either window in the area
covered b~r the subwindow is made to both windows. The coor
dinates !'egin y,begin_x are specified relative to the
overall ~~creen, not the relative (0, 0) of win. If either
lines 6r col is 0 (zero), that dimension is set to (LINES -
begin_y) c,r-(COLS - begin_x) respectively.

2-10 Zilog 2-10

LEX

A LEX.ICAL ANALYZER GENERATOR *

USER GUIDE

* This information is based on an article originally written by
M. E. Lesk and E. Schmidt, Bell Laboratories.

LEX Zilog LEX

ii Zilog ii

LEX Zilog LEX

Pref ace

This document is a reference manual for Lex, a lexical
analyzer generator that accepts string matching specifica
tions and produces a program in a general-purpose language.
The reader is assumed to have some experience with Lex
before using this document.

Sections 1-6 give an introduction to Lex and describe its
internal rules. Hints for compiling Lex appear in Section
7. Section 8 describes the interface between Lex and Yacc
(yet another compiler-compiler). Examples of Lex are shown
in Section 9, and Section 10 gives ways to define different
Lex environments. Sections 11-13 summarize the Lex charac
ter set, source format, and cautions.

iii Zilog iii

LEX Zilog LEX

iv Zilog iv

LEX Zilog

Table of Contents

SECTION 1 INTRODUC~r I ON .

SECTION 2 LEX SOURCE .

SECTION 3 LEX REGULAR EXPRESSIONS .
3.1. Introduction ••••••••••
3 • 2 • Operators • • • • • • • ••
3.3. Character Classes ••• • ••
3.4. Arbitrary Character •••
3.5. Optional Expressions ••••• • •••••
3.6. Repeated Expressions ••••••••••••••••••••••
3.7. Alternation and Grouping ••
3.8. Context Recognition ••••• • ••••
3.9. Repetitions and Definitions •••••
3.10. Segment Separator •••••••••

SECTION 4 LEX ACTIONS .
4 .1. Introduction .
4.2. Regular Routines
4.3. Input/Output Routines
4.4. Library Routines

SECTION 5 AMBIGUOUS SOURCE RULES .

SECTION 6 LEX SOURCE DEFINITIONS .

v Zilog

LEX

1-1

2-1

3-1

3-1
3-1
3-2
3-3
3-3
3-3
3-4
3-4
3-5
3-5

4-1

4-1
4-1
4-4
4-4

5-1

6-1

v

LEX Zilog LEX

or more ••• "; the $ indicates "end of line." No action is
specified, so the program generated by Lex Cyylex) ignores
these characters. Everything else is copied. To change any
remaining string of blanks or tabs to a single blank, add
another rule:

%%
[\t]+$;
[\t]+ printf(" ");

This source scans for both rules at once and executes the
desired rule action. The first rule matches all strings of
blanks or tabs at the end of lines, and the second rule
matches all remaining strings of blanks or tabs.

Lex can be used alone for simple transformations, or for
analysis and statistics gathering on a lexical level. Addi
tional programs can be added easily to programs written by
Lex. Lex can also be used with a parser generator such as
Yacc to perform the lexical analysis phase. When used as a
preprocessor for a later parser generator, Lex partitions
the input stream, and the parser generator assigns structure
to the resulting pieces. The flow of control in such a case
(which might be the first half of a compiler, for example)
is shown below

lexical
rules
(Lex)

Input -> yylex

grammar
rules
(Yacc)

-> yyparse -> Parsed input

Yacc users realize that the name yylex is what Yacc expects
its lexical analyzer to be named, so the use of this name by
Lex simplifies interfacing.

The time a Lex program takes to recognize and partition an
input stream is proportional to the length of the input.
The number of Lex rules or the complexity of the rules is
not important in determining speed, unless rules that
include forward context require a significant amount of
rescanning. What does increase with the number and complex
ity of rules is the size of the program generated by Lex.

Lex is not limited to source that can be interpreted on the
basis of one-character look-ahead. For example, if there
are two rules, one looking for ab and another for abcdefg,
and the input st ream is abCdefh, Lex r.ecogni zes ab and
leaves the input pointer just before ed. Such backup is
more costly than the processing of simpler langua~1es.

LEX Zilog

SECTION 2
LEX SOURCE

The general format of Lex source is:

{definitions}
%%
{rules}
%%
{user subroutines}

LEX

The definitions and the user subroutines are often omitted.

The rules represent the user's control decisions. They are
in the form of a table, in which the left column contains
regularexpressions (Section 3) and the right column contains
actions--program fragments to be executed when the expres
sions are recognized. The second %% is optional, but the
first is required to mark the beginning of the rules.

To change a number of words from British spelling to Ameri
can spelling, start with Lex rules such as:

colour
mechanise
petrol

printf("color");
printf("mechanize");
printf("gas");

These rules are not quite enough, since the word petroleum
would become gaseum; a way of dealing with this will be
described in Sections 4 and 5.

An individual rule such as

integer printf("found keyword INT");

is used to look for the string integer in the input stream;
it prints the message "found keyword INT" whenever it
appears. In this example, the host procedural language is C
and the C library function printf prints the string. The
end of the expression is indicated by the first blank or tab
character. If the action is merely a single C expression,
it can be given on the right side of the line; if it is com
pound, or takes more than a line, it should be enclosed in
braces.

2-1 Zilog 2-1

LEX Zilog LEX

SECTION 3
Lf~X REGULAR EXPRESSIONS

3.1. Introduction

A regular expression specifies a set of strings to be
matched. It contains text characters that match the
corresponding characters in the strings being compared and
operator characters that specify repetitions, choices, and
other features.

The letters of the alphabet and the digits are always text
characters; thus, the regular expression

integer

matches the string Jnteger wherever it appears, and the
expression

a57D

looks for the string a57D.

3o2. Operators

The operator characters are

" \ [] ~ - ? . * +) $/{ }%<>

When operators are used as text characters, an escape must
be used. The quotation mark operator (") indicates that any
characters contained between a pair of quotes should be
treated as text characters. Tbus,

xyz"++"

matches the string ~<yz++ when it appears.
string can be quoted.

A part of a

Ordinary text characters can be included within quotes. For
example, the expression

"xyz++"

is the same as the one above. The practice of quoting every
nonalphanumeric character being used as a text character
eliminates the need to remember the list of current operator

3·-1 Zilog 3-1

LEX Zilog LEX

characters.

An operator character can also be turned into a text charac
ter by preceding it with \, as in the command

xyz\+\+

which is another (less readable) equivalent of the above
expressions.

Another use of the quoting mechanism is to insert a blank
into an expression. Normally, blanks or tabs end a rule.
Any blank character not contained within brackets ([]) must
be quoted.

Several normal C escapes with \ are recognized: \n is new
line, \t is tab, and \b is backspace. To enter \ itself,
use \\. Since a new line is illegal in an expression, \n
must be used; it is not required to escape tab and back
space. Characters other than blank, tab, new line, and the
operator characters are always text characters.

3.3. Character Classes

Classes of characters can be specified using the operator
pair []. The construction [abc] matches a single character,
which can be a,b, or c. When-enclosed in brackeits, most
characters lose any special meaning (they are not treated as
operators). The only exceptions are \, -, and A.

The - character indicates ranges. For example,

[a-z0-·9<>]

indicates the character class containing all the lowercase
letters, the digits, the angle brackets, and underline.
Ranges can be given in either order. Using between any
pair of characters that are not both uppercase letters, both
lowercase letters, or both digits causes a warning message.
If a minus sign is included in a character class, it should
be first or last; thus,

[-+0-9]

matches all the digits and the two signs.

The A operator matches the complement of the subsequent
character string. Thus,

["'abc]

3-2 Zilog 3-2

LEX Zilog LEX

matches all characters except a, b, or c, including all spe
cial or control characters. The expression

matches any character that is not a letter.

The A operator must immediately follow the left bracket.

The \ character provides the usual escapes within character
class brackets.

3.4. Arbitrary Character

To match almost any character, use the operator character

which is the class of all characters except new line.
Escaping into octal is possible, although nonportable, with
the command

[\40-\176]

which matches all printable characters in the ASCII charac
ter set, from octal 40 (blank) to octal 176 (tilde).

3.5. Optional Expressions

The operator ? indicates an optional element of an expres
sion. Thus,

ab?c

matches either ac or abc.

3.6. Repeated Expressions

Repetitions of classes are indicated by the operators * and
+.

a*

is any number of consecutive a characters, including zero;
while

a+

3-3 Zilog 3-3

LEX Zilog LEX

is one or more instances of a. For example,

[a-z]+

is all strings of lowercase letters. And

[A-Za-z] [A-Za-z0-9] *

indicates all alphanumeric strings with a leading alphabetic
character. This is a typical expression for recognizing
identifiers in computer languages.

3.7. Alternation and Grouping

The operator I indicates alternation:

(ab led)

matches either ab or ed. Parentheses are used for grouping,
although they -are not necessary on the outside level. For
example,

ab led

is sufficient for the previous command.

Parentheses more commonly occur in more complex expressions,
such as:

(ablcd+)?(ef)*

which matches such strings as abefef, efefe~, cdef., or cddd,
but not ~be, abci, or abcdef.

3.8. Context Recognition

Lex recognizes a small amount of surrounding context. The /
operator indicates trailing context. The expression

ab/cd

matches the string ab, but only if followed by cdk. Thus,

ab$

is the same as

ab/\n

3-4 Zilog 3-4

LEX Zilog LEX

The two simplest operators for this are A and $. If the
first character of an expression is , the expression is
only matched at the beginning of a line (after a new line
character, or at the beginning of the input stream). This
can never conflict with the other meaning of A (complementa
tion of character classes) since that only applies within
the [] operators. If the last character is $, the expres
sion is only matched at the end of a line (when immediately
followed by a new line). If a rule is to be executed only
when the Lex interpreter is in start condition x, the rule
is prefixed by

<x>

using the angle bracket operator characters. If "being at
the beginning of a line" is considered to be start condition
ONE, then the A operator is equivalent to

<ONE>

Start conditions are explained more fully in Section 10.

3.9. Repetitions and Definitions

The operator pair {} specifies either repetitions (if it
encloses numbers) or definition expansion (if it encloses a
name). For example, the command

{digit}

looks for a predefined string named digit and inserts it at
that point in the expression. The definitions are given in
the first part of the Lex input, before the rules.

In contrast,

a{l,5}

looks for one to five occurrrences of a.

3.19. Segment Separator

The initial % is the separator for Lex segments.

3--5 Zilog 3-5

LEX

4.lo Introduction

Zilog

SECTION 4
LEX ACTIONS

LEX

When an expression is matched, Lex executes the correspond
ing action. This section describes some features of Lex
that aid in writing actions. There is a default action,
which consists of copying the input to the output, that is
performed on all strings not otherwise matched. Thus, to
absorb the entire input without producing any output, rules
must be provided to match everything. When Lex is used with
Yacc, this is the normal situation. Actions are used
instead of copying the input to the output. A character
combination that is omitted from the rules but appears as
input is likely to be printed on the output, calling atten
tion to the gap in the rules.

4.2. Regular Routines

Specifying a C null statement (;) as an action causes the
input to be ignor~d. A frequently used rule is

\t\n]

which causes the three spacing characters (blank, tab, and
new line) to be ignored.

Another easy way to avoid writing actions is the action
character I, ·which indicates that the action for this rule
is the action for the next rule. The previous example could
also have been written

" "
"\t"
"\n"

with the same result. The quotes around \n and \! are not
required.

In more complex actions, it is often necessary to know the
actual text that matches some expression like [a-z]+. Lex
leaves this text in an external character array named
yytext. To print the name found, use a rule like:

[a-z]+ printf("%s", yytext);

4-1 Zilog 4-1

LEX Zilog LEX

This prints the string in yytext. The C function printf
accepts a format argument and data to be printed. In this
case, the format is "print string," % indicates data conver
sion, s indicates string type, and the characters in yytext
a re the -da1ta. This rule simply pl aces the mc:1tched std ng on
the output.

This action is so common that it can be written as ECHO.
The expression

[a-z]+ ECHO;

is the same as the previous example. Such rules are often
required to avoid matching some other rule that is not
desired. For example, if there is a rule thc:1t matches read,
it normally matches the instances of read contained in bread
or readjus:t. To avoid this, a rule or-tJi"e form [~-~]+ is
needed. See examples in this section for variations of this
situation.

Sometimes it is more convenient to know the end of what has
been found; therefore, Lex also provides a count (yyleng) of
the number of characters matched. To count both the number
of words and the number of characters in words in the input,
enter

[a-zA-·Z] + {words++; chars += yyleng;}

which accumulates in chars the number of characters in the
words recognized. The last character in the string matched
can be accessed by

yytext[yyleng-1]

Occasionally, a Lex action determines that a rule has not
recognized the correct span of characters. Two routines are
provided to aid with this situation. First, yymore() can be
called to indicate that the next input expression iecognized
is to be tacked on to the end of this input. (Normally, the
next input string overwrites the current entry in yyte_!t.)
Second, n·less (n) can be called to indicate that not all the
characters matched by the currently successful expression
are w~nted right now. The argument n indicates the number
of characters in yytext to be retai~ed. Further characters
previously matched are returned to the input. This provides
the same sort of look-ahead offered by the I operator, but
in a different form.

For example, consider a language that defines a string as a
set of characters between quotation marks {"),and provides
that to include a " in a string, it must be preceded by a \.

4-2 Zilog 4-2

LEX Zilog LEX

The regular expression that matches this requirement is
somewhat confusing, so it might be preferable to write

\"[""]* {
if (yytext[yyleng-1) -- '\\')

yymo re () ;
else

••• normal user processing
}

which, a upon find in<~ a string such as "abc\"def", will
first match the five characters, "abc\. Then the call to
yymore () causes the next part of the string, "def", to be
tacked on the end. The final quote terminating the string
is picked up in the code labeled "normal processing."

The function yyless() reprocesses text in various cir
cumstances. Consider the C problem of distinguishing the
ambiguity of "=-a"; to treat this as "=- a" but print a mes
sage, it is possTble to use a rule like:

=-[a-zA-Z] {
printf("Operator (=-) ambiguous\n");
yyless(yyleng-1);

action for =-
}

This prints a message~, returns the letter after the operator
to the input stream, and treats the operator as "=-".
Alternatively, to treat this as "= -a", just return the
minus sign as well as the letter to the input. The follow
ing command performs the other interpretation:

=-[a-zA-Z] {
printf("Operator (=-) ambiguous\n");
yyless(yyleng-2);

action for= •••
}

The expressions for the two cases are more easily be written
as

=-'/ [A-Za-z]

in the first case and

=/-[A-Za-z]

in the second. No backup is then required in the rule
action.

4-3 Zilog 4-3

LEX Zilog LEX

It is not necessary to recognize the whole identifier to
observe the ambiguity. The possibility of =-l, however,
makes

=-/[A \t\n]

a better rule.

4.3. Input/Output Routines

Lex also permits access to the Input/Output routines it
uses. They are:

$!nPU!(), which returns the next input character

$ output(£), which writes the character con the out
put

unpu!(£), which pushes the character c back onto
the input stream to be read later by input()

By default, these routines are provided as macro defini
tions, but it is possible to override them and supply origi
nal versions. These routines define the relationship
between external files and internal characters, and must all
be retained or modified consistently. They can be redefined
to cause input or output to be transmitted to or from
places, including other programs or internal memory. The
character set that is used must be consistent in all rou
tines. This means that a value of zero returned by input
must mean end-of-file, and the relationship between li'i1'PUt
and input must be retained, or the Lex look-ahead will not
work. ·

Lex looks ahead with every rule ending in +, *, ?, or $, or
containing /. Look-ahead is also necessary to match an
expression that is a prefix of another expression. In other
instances, Lex does not look ahead.

4.4. Library Routines

Lex library routine yywrap() is called whenever lex reaches
an end-of-file. The user may wish to redefine this func
tion. If yywrap returns a 1, Lex continues with the normal
wrapup on end of input. Sometimes, however, it is con
venient to arrange for more input to arrive from a new
source. In this case, it is necessary to provide a yywrap
that arranges for new input and returns 0. This instructs

4-4 Zilog 4-4

LEX Zilog

Lex to continue processing.
returns 1.

LEX

The default yywrap always

This routine is convenient for printing tables and summaries
at the end of programs. It is not possible to write a nor
mal rule that recognizes end-of-file; the only access to
this condition is through ~r~. Unless an original ver
sion of input() is supplied, a file containing nulls cannot
be handled, because a value of 0 returned by input is taken
to be end-of-file.

4-5 Zilog 4-5

LEX Zilog

SECTION 5
AMBIGUOUS SOURCE RULES

LEX

Lex can handle ambi9uous specifications. When more than one
expression can match the current input, Lex chooses as fol
lows:

1. The longest match is preferred.

2. Among rules that match the same number of charac
ters, the rule given first is preferred.

For example, given the following rules

integer keyword action ••• ;
[a-z]+ identifier action ••• ;

if the input is integers, it is taken as an identifier,
because [a-z]+ matches eight characters while integer
matches only seven. If the input is integer, both rules
match seven characters, and the keyword rule is selected
because it is given first. Anything shorter (such as int)
does not match the expression integer, so the identifier
action is taken.

The principle of preferring the longest match makes rules
containing expressions like * dangerous. For example,

I • * I

might seem a good way of recognizing a string in single
quotes, but it is an invitation for the program to read far
ahead, looking for a distant single quote. Presented with
the input

'first' quoted string here, 'second' here

the above expression will match

'first' quoted string here, 'second'

which is probably not what was wanted. A better rule is of
the form

5-1 Zil©g 5-1

LEX Zilog LEX

which, on the above input, stops after 'first'. The conse
quences of errors like this are mitigated by the fact that
the • operator does not match new line. Thus, expressions
like .* stop on the current line. Do not try to defeat this
with expressions like [.\n]+ or equivalents; the Lex gen
erated program will try to read the entire input file, caus
ing internal buffer overflow.

Lex normally partitions the input stream rather than search
ing for all possible matches of each expression. This means
that each character is accounted for once only. For exam
ple, to count occurrences of both she and he in an input
text, some Lex rules might be

she s++;
he h++;
\n I

;

where the last two rules ignore everything besides he and
she. This would, however, produce unexpected results; Lex
does not recognize the instances of he included in she,
since once it has passed she, those characters are--ri'Ot
analyzed again. ~-

To override this choice, use the action REJECT, which means
"do the next alternative." It causes whatever rule was
second choice after the current rule to be executed. The
position of the input pointer is adjusted accordingly. To
count the included instances of he, change the previous
example to: --

she {s++; REJECT;}
he {h++; REJECT;}
\n I

After being counted, each expression is rejected; whenever
appropriate, the other expression is then counted. In this
example, it is possible to omit the REJECT action on he; in
other cases, however, it might not be possible to tellwhich
input characters fit in both classes.

Consider the two rules

5-2

a[bc]+ {
a[cd]+ {

REJECT;}
REJECT;}

Zilog 5-2

LEX Zilog LEX

If the input is ab, only the first rule matches; only the
second matches ad. The input string accb matches the first
rule for four characters and the second rule for three char
acters. In contrast, the input aced agrees with the second
rule for four characters and with the first rule for three.

In general, REJECT is useful whenever the purpose of Lex is
to detect all examples of some items in the input, and the
instances of these items overlap or include each other. It
is not useful if the purpose is to partition the input
stream. Suppose a digram table of the input is desired.
Normally the digrams overlap; for example, the word the is
considered to contain both th and he. Assuming a--two
dimensional array called digram to-be incremented, the
appropriate source is

%%
[a-z] [a-z]
\n

{digram[yytext[0]] [yytext[l]]++; REJECT;}

where the REJECT is necessary to
beginning at every character,
character.

5-3 Zilog

pick up a letter pair
rather than at every other

5-3

LEX Zilog LEX

SECTIO~ 6
LEX SOURCE DEFINITIONS

As Lex turns the source rules into a program, any source not
intercepted by Lex is copied into the generated program.
This happens in the following three cases:

1. Any line beginning with a blank or tab that is not part
of a Lex rule or action is copied into the Lex gen
erated program. Such source input prior to the first
%% delimiter is external to any function in the code.
If it appears immediately after the first %%, it
appears in an appropriate place for declarations in the
function written by Lex that contains the actions.
This material must look like program fragments, and
must precede the first Lex rule.

As a side effect, lines beginning w~th a blank or tab
that contain a comment are passe~;through to the gen
e rated pro g ram • Th i s i n c 1 ud es co mrrfe n ts i n e i the r the
Lex source or the generated code. The comments should
follow the host language convention.

2. Anything included between lines containing only %{ and
%} is copied out as in the previous case. The delim
iters are discarded. This format permits entering text
like preprocessor statements that must begin in column
1, or copying lines that do not look like programs.

3. Anything after the third %% delimiter, regardless of
format, is copied out after the Lex output.

In addition to the rules, options are required to define
variables used by Lex or by a user program.

Definitions intended for Lex are given before the first %%
delimiter. Any line in this section not contained between
%{ and %}, and beginning in column 1, is assumed to define
Lex substitution strings. The format of such lines is

name translation

and it causes the string given as a translation to be asso
ciated with the name. The name and translation must be
separated by at least one blank or tab, and the name must
begin with a letter. The translation can then be called out
by the {name} syntax in a rule. Using {D} for the digits
and {E} for an exponent field, for example, abbreviates

6-1 Zilog 6-1

LEX Zilog

rules to recognize numbers, as follows:

D
E
%%
{D}+
{ D }+II .• II { D } * ({ E }) ?
{D}*". 11 {D}+({E})?
{D}+{E}

[0-9]
[D Ede] [-+] ? { D} +

printf(11 integer 11
);

printf(11 real");

LEX

The first two rules for real numbers require a decimal point
and contain an optional exponent field, but the first rule
requires at least one digit before the decimal point and the
second rule requires at least one digit after the decimal
point. To handle the problem posed by a Fortran expression
such as 35.EQ.I, which does not contain a real number, a
context-s•ensiil ve rule such as

[0-9]+/ 11
•

11 EQ printf(11 integer 11
);

can be used in addition to the normal rule for integers.

The definitions section can also contain other commands,
including the selection of a host language, a character set
table, a list of start conditions, or adjustments to the
default size of arrays within Lex itself for larger source
programs.

6-2 Zilog 6-2

LEX Zilog

SECTION 7
COMPILING LEX

LEX

There are two steps in compiling a Lex source program.
First, the Lex source must be turned into a generated pro
gram in the host language. Then this program must be com
piled and loaded, usually with a library of Lex subroutines.
The generated program is on a file named lex.IT·£· The I/O
library is defined in terms of the C standard library.

The library is accessed by the loader flag -11. An example
of a appropriate set of commands is

lex source
cc -u -main lex.yy.c -11

The resulting program is placed on the usual file a.out for
later execution. (To use Lex with Yacc, see Section 8.)
Although the default Lex I/O routines use the C standard
library, Lex itself does not; if private versions of input,
output, and unput are given, the library can be avoided.

7-1 Zilog 7-1

LEX Zilog

SECTION 9
EXAMPLES

9~1. Copy with Simple Arithmetic Changes

LEX

The following Lex source program copies an input file while
adding three to every positive number divisible by seven.

%%
int k;

[0-9]+ {
sscanf(yytext, "%d", &k);
if (k%7 == 0)

printf("%d", k+3);
else

printf ("%d" ,k);
}

The rule [0-9]+ recognizes strings of digits; sscanf con
verts the digits to binary and stores the result in k. The
operator % (remainder) checks whether k is divisible by
seven; if it is, it is incremented by three as it is written
out.

This program alters such input items as 49.63 or X7. Furth
ermore, it increments the absolute value of all negative
numbers divisible by seven. To avoid this, add a few more
rules after the active one, as follows:

%%

-?[0-9]+

-?[0-9.]+
[A-Za-z] [A-Za-zt~-9] +

int k;
{
sscanf(yytext, "%d", &k);
printf ("%d", k%7 == 0 ? k+3
}
ECHO;
ECHO;

k) ;

Numerical strings containing a • or preceded by a letter are
picked up by one of the last two rules, and are not changed.
The if-else has been replaced by a C conditional expression
to save space. The form a?b:c means "if a then b else c."

9.2ft Statistical Accumulations

The following program produces histograms of the lengths of
words, where a word is defined as a string of letters.

9-1 Zilog 9-1

LEX

%%
[a-z]+

\n
%%

Zilog

int lengs[l00];

lengs[yyleng]++;
I

yywrap ()
{
int i;
printf("Length No. words\n");
for(i=0; i<l00; i++)

if (lengs[i] > 0)
printf("%5d%10d\n", i ,lengs[i]);

return(l);
}

LEX

This program accumulates the histogram, while producing no
output. At the end of the input, it prints the table. The
final statement (return(!);) tells Lex to perform wrapup.
If yywrap returns zero-(false), further input is available
and the program continues reading and processing. Providing
a yywrap that never returns true causes an infinite loop.

9-2 Zilog 9-2

LEX Zilog LEX

SECTION 10
LEFT CONTEXT SENSITIVITY

Sometimes it is desirable to have several sets of lexical
rules to be applied at different times in the input. For
example, a compiler preprocessor might distinguish prepro
cessor statements and analyze them differently from ordinary
statements. This requires sensitivity to prior context, and
there are several ways of handling such problems.

This section describes three means of dealing with different
environments:

$ using flags

$ using start conditions for rules

& switching among distinct lexical analyzers

In each case, there are rules that recognize the need to
change the environment in which the following input text is
analyzed, and set some parameter to reflect the change.

A flag explicitly tested by the user's action code is the
simplest way of dealing with the problem, since Lex is not
necessarily involved. It may be more convenient, however,
to have Lex keep track of the flags as initial conditions on
the rules.

Any rule can be associated with a start condition and is
only recognized when Lex is in that start condition. The
current start condition can be changed at any time.

Finally, if the sets of rules for the different environments
are very dissimilar, write several distinct lexical
analyzers and switch from one to another as desired.

The following examples copy the input to the output, chang
ing the word magiq to first on every line that begins with
the letter ~' changing magic to second on every line that
begins with the letter ~' and changing magic to third on
every line that begins with the letter c. All other words
and all other lines are left unchanged.-

These rules are so simple that the easiest way to do this
job is with a flag:

10-1 Zilog 10-1

LEX

%%
Aa
Ab
Ac
\n
magic

Zilog

int flag;

{flag = ' a ' ; ECHO;}
{flag = 'b'; ECHO;}
{flag = 'c' ; ECHO;}
{flag = 0 ; ECHO;}
{
switch (flag)
{
case 'a': printf("first"); break;
case 'b': printf("second"); break;
case 'c': printf("third"); break;
default: ECHO; break;
}
}

LEX

To handle the same problem with start conditions, each start
condition must be introduced to Lex in the definitions sec
tion with a line reading

%Start name! name2 •••

The conditions can be named in any order. The weird Start
can be abbreviated to s or s. The conditions can be refer
enced at the head of a rule ~ith brackets (<>). The command

<namel>expression

is a rule that is only recognized when Lex is in the start
condition namel. To enter a start condition, execute the
action stc:1tement

BEGIN namel;

which changes the start condition to namel. To resume the
normal state, the command

BEGIN 0;

resets the initial condition of the Lex automaton inter
preter. A rule can be active in several start conditions.
For example,

<namel,name2,name3>

is a legal prefix. Any rule not beginning with the <> pre
fix operator is always active.

10-2 Zilog 10-2

LEX Zilog

The previous example can be written:

%START AA BB CC
%%
"'a
"'b
"'c
\n
<AA>magic
<BB>magic
<CC>magic

{ECHO; BEGIN AA;}
{ECHO; BEGIN BB;}
{ECHO; BEGIN CC;}
{ECHO; BEGIN 0;}
printf("first");
printf("second");
printf ("third");

LEX

The logic is the same as before, but Lex, rather than the
user's code, does the work.

10-3 Zilog 10-3

LEX Zilog

SECTIPN 11
CHARACTER SET

LEX

The programs generated by Lex handle character I/O only
through the routines input, output, and unput. Thus the
character representation provided in these routines is
accepted by Lex and used to return values in yytext. For
internal use, a character is represented as a small integer.
If the standard library is used, this integer has a value
equal to the integer value of the bit pattern representing
the character on the host computer. If the interpretation
of a character is changed by I/O routines that translate the
characters, a translation table must notify Lex. This table
must be in the definitions section and must be bracketed by
lines containing only %T. The table must.contain lines of
the form

{integer} {character string}

which indicate the value associated with each character. A
sample character table follows:

%T
1 Aa
2 Bb

26 Zz
27 \n
28 +
29
30 0
31 1

39 9
%T

This table maps the lower and uppercase letters together
into the integers 1 through 26, new line into 27, + and -
into 28 and 29, and the digits into 30 through 39. If a
table is supplied, every character that is to appear either
in the rules or in any valid input must be included in the
table. No character can be assigned the number 0, and no
character can be assigned a bigger number than the size of
the hardware character set. C users probably will not wish
to use the character table feature.

11-1 Zilog 11-1

LEX Zilog

SECTION 12
SUMMARY OF SOURCE FORMAT

The general format of a Lex source file is:

{definitions}
%%
{rules}
%%
{user subroutines}

The definitions section contains a combination of

$ Definitions, in the form "name space translation"

$ Included code, in the form "space code"

$ Included code, in the form

%{
code
%}

Start conditions, given in the form

%S name! name2 •••

Character set tables, in the form

%T
number space character-string

%T

Changes to internal array sizes, in the form

%x nnn

LEX

where nnn is a decimal integer representing an array
size ancr-x selects the parameter as follows:

12-1

Letter
p
n
e

Parameter
positions
states
tree nodes

12-1

LEX

a
k
0

Zilog

transitions
packed character classes
output array size

LEX

Lines in the rules section have the form "expression action"
where the action can be continued on succeeding lines by
using braces to delimit it.

Regular expressions in Lex use the following operators:

12-2

x
"x"
\x
[xy]
[x-z]
[Ax]

Ax
<y>x
x$
x?
x*
x+
xly
(X)
x/y
{xx}

x{m,n}

the character x
an x, even if x is an operator
an x, even if x is an operator
the character x or y
the characters x, y, or z
any character but x
any character but new line
an x at the beginning of a line
an x when Lex is in start condition y
an x at the end of a line
an optional x
0,1,2, ••• instances of x
1,2,3, ••• instances of x
an x or a y
an x
an x, but only if followed by y
the translation of xx from the definitions
section
m through n occurrences of x

Zilog 12-2

LEX Zil6g

SECTION 13
CAUTIONS

LEX

There are some expressions that produce exponential growth
of the tables; fortunately, they are rare.

REJECT does not rescan the input; instead it remembers the
results of the previous scan. This means that if a rule
with trailing context is found, and REJECT is executed,
unput must not have been used to change the characters com
rng from the input stream. This is the only restriction on
manipulation of the not-yet-processed input.

13-1 Zilog 13-1

LEX Zilog

Table of Contents

SECTION 1 INTRODUC~~ION .

SECTION 2 LEX SOURCE -.

SECTION 3 LEX REGULAR EXPRESSIONS

3 .1. Introduction • • • • • • •
3.2. Operators ••••••••••• . . .
3.3. Character Classes ••••
3.4. Arbitrary Character •••
3.5. Optional Expressions ••••••••
3.6. Repeated Expressions ••• • ••••
3.7. Alternation and Grouping ••• • ••••
3.8. Context Recognition •••••• • ••••••••••••
3.9. Repetitions and Definitions ••••••••
3.10. Segment Separator •••••••••••••••••••

SECTION 4 LEX ACTIONS ~ .
4 .1.
4.2.
4.3.
4.4.

Introduction •••••••••••
Regular Routines ••••••
Input/Output Routines
Library Routines •••••

SECTION 5 AMBIGUOUS SOURCE RU~ES

SECTION 6 LEX SOURCE DEFINITIONS

v Zilog

. . . .
. . .

.

LEX

1-1

2-1

3-1

3-1
3-1
3-2
3-3
3-3
3-3
3-4
3-4
3-5
3-5

4-1

4-1
4-1
4-4
4-4

5-1

6-1

v

LEX Zilog LEX

SECTION 7 COMPILING LEX • • • • • • • • • • • • • • • • • • • .. • • • • • • • • • • 7-1

SECT I ON 8 LEX AND YACC • . • 8-1

SECTION 9 EXAMPLES • 9-1

9.1. Copy with Simple Arithmetic Changes ••••••••••• 9-1
9. 2. Statistical Accumulations • 9-1

SECTION lH LEFT CONTEXT SENSITIVITY •••••••••••••••••• 10-1

SECTION 11 CHARACTER SET ••••••••••••••••••••••••••••• 11-1

SECTION 12 SUMMARY OF SOURCE FORMAT•••••••••••••••••• 12-1

SECTION 13 CAUTIONS •••••••••••••••••••••••••••••••••• 13-1

vi Zilog vi

LEX Zilog

SECTION 1
INTRODUCTION

LEX

Lex is a program generator for lexical processing of charac
ter input streams. It accepts user-supplied specifications
for character string matching and produces a program in a
general-purpose language (yylex). This program recognizes
regular expressions in an input stream and performs the
specified actions for each ~xpression as it is detected.
This entire process is shown as follows:

Source -> Lex -> yylex

Input -> yylex -> Output

Lex is not a complete language, but rather a generator
representing a new language feature that can be added to
different programming languages, called host languages. Just
as general-purpose languages produce code to run on dif
ferent computer hardware, Lex writes code in different host
languages. The host language is used for the output code
generated by Lex and also for the program fragments added by
the user. Compatible run-time libraries for the different
host languages are also provided. This makes Lex adaptable
to different environments and different users. Each appli
cation can be directed to the combination of hardware and
host language appropriate to the task, the user's back
ground, and the properties of local implementations. At
present, the only supported host language is c.

Code needed for task completion, except expression-matching,
is supplied by the user. This can include code written by
other generators. A high-level language is provided to
write the string expressions to be matched, while the user's
freedom to write actions is unimpaired. This allows the use
of several string manipulation languages.

For example, to delete from the input all blanks or tabs at
the ends of lines, all that is required is:

%%
[\t]+$

This program contains a %% delimiter to mark the beginning
of the rules and one rule that matches one or more instances
of the characters blank or tab (written \t for visibility)
just prior to the end of a line. The brackets indicate the
character class made of blank and tab; the + indicates "one

1-1 Zilog 1-1

LEX Zilog LEX

or more ••• "; the $ indicates "end of line." No action is
specified, so the program generated by Lex (yylex) ignores
these cha.racters. Everything else is copied.- To -change any
remaining string of blanks or tabs to a single blank, add
another rule:

%%
[\t]+$;
[\t]+ printf(" ");

This source scans for both rules at once and executes the
desired rule action. The first rule matches all strings of
blanks or tabs at the end of lines, and the second rule
matches all remaining strings of blanks or tabs.

Lex can be used alone for simple transformations, or for
analysis and statistics gathering on a lexical level. Addi
tional programs can be added easily to programs written by
Lex. Lex can also be used with a parser generator such as
Yacc to perform the lexical analysis phase. When used as a
preprocessor for a later parser generator, Lex partitions
the input stream, and the parser generator assigns structure
to the resulting pieces. The flow of control in such a case
(which might be the first half of a compiler, for example)
is shown below

lexical
rules
(Lex)

Input -> yylex

grammar
rules
(Yacc)

-> yyparse -> Parsed input

Yacc users realize that the name yylex is what Yacc expects
its lexical analyzer to be named, so the use of this name by
Lex simplifies interfacing.

The time a Lex program takes to recognize and partition an
input stream is proportional to the length of the input.
The number of Lex rules or the complexity of the rules is
not important in determining speed, unless rules that
include forward context require a significant amount of
rescanning. What does increase with the number and complex
ity of rules is the size of the program generated by Lex.

Lex is not limited to source that can be interpreted on the
basis of one-character look-ahead. For example, if there
are two rules, one looking for ab and another for abcdefg,
and the input stream is abCdefh, Lex recognizes ab and
leaves the input pointer just before ed. Such backup is
more costly than the processing of simpler languages.

1-2 Zilog 1-2

LEX Zilog

SECTION 7
COMPILING LEX

LEX

There are two steps in compiling a Lex source program.
First, the Lex source must be turned into a generated pro
gram in the host language. Then this program must be com
piled and loaded, usually with a library of Lex subroutines.
The generated program is on a file named lex.yy.£· The I/O
library is defined in terms of the C standard library.

The library is accessed by the loader flag -11. An example
of a appropriate set of commands is

lex source
cc -u -main lex.yy.c -11

The resulting program is placed on the usual file a.out for
later execution. (To use Lex with Yacc, see Section 8.)
Although the default Lex I/O routines use the C standard
library, Lex itself does not; if private versions of input,
output, and unput are given, the library can be avoided.

7-1 Zilog 7-1

LEX Zilog

SECTI9N 8
LEX AND YACC

LEX

Lex is used with Yacc (yet another compiler-compiler) to
write a program named y_ylex(), required by Yacc for its
analyzer. Normally 1, the defauft main program on the Lex
library calls this routine, but if Yacc is loaded and its
main program is used, Yacc calls yylex(). In this case,
each Lex rule must end with

return(token);

where the appropriate token value is returned. An easy way
to get access to Yacc's names for tokens is to compile the
Lex output file as part of the Yacc output file by placing
the line

include "lex.yy.c"

in the last section of Yacc input.

To obtain the grammar named "good" and the lexical rules
named "better," use the commands in the following sequence:

yacc good
lex better
cc -u main y.tab.c -ly -11

The -u main must appear before y.tab.c,
library (-ly) must be loaded before the
obtain a main program that invokes the Yacc
generations of Lex and Yacc programs can be
order.

8-1 Zilog

and the Yacc
Lex library to
parser. The

done in either

8-1

LINT -- A C PROGRAM CHECKER *

* This information is based on an article
originally written by s.c. Johnson, Bell Laboratories.

LINT Zilog LINT

ii Zilog ii

LINT Zilog

Table ~t Contents

SECTION 1 GENERAL .
1.1. A Word About Philosophy •••••••
1.2. Unused Variables and Functions •••
1.3. Set/Used Information ••••••••
1.4. Flow of Control ••
1.5. Function Values •• 1.6. Type Checking
1. 7. Type Casts

... ..
1.8. Nonportable Character Use ••••• • ••
1.9. Assignments of longs to ints ••••••••••••••••
1.10. Strange Constructions •••• • •••••••••
1.11. Ancient History ••••••••••••••••••• • ••
1.12. Pointer Alignment •••• • •••••••
1.13. Multiple Uses and Side Effects •••••••••••
1.14. Implementation • • • • • • • • • • • • • ••••••
1.15. Portability •••• ••• • ••••••••••
1.16. Shutting Lint Up ••••••
1.17. Library Declaration Files
1.18. Bugs, etc ••••••••••••••

APPENDIX A CURRENT LINT OPTIONS .

iii Zilog

LINT

1-1

1-1
1-2
1-3
1-3
1-4
1-5
1-6
1-6
1-7
1-7
1-8
1-9
1-9

1-10
1-11
1-12
1-14
1-14

A-1

iii

LINT Zilog

SECTION 1
GENERAL

Suppose there are two C source files, filel. c and
which are ordinarily compiled and loaded together.
C Programming Language.) Then the command

lint filel.c file2.c

LINT

file2.c,
(See The

produces messages describing inconsistencies and inefficien
cies in the programs. The program enforces the typing rules
of C more strictly than the C compilers (for both historical
and practical reasons) enforce them. The command

lint -p filel.c file2.c

will produce, in addition to the above messages, additional
messages which relate to the portability of the programs to
other operating systems and machines. Replacing the by will
produce messages about various error-prone or wasteful con
structions which, strictly speaking, are not bugs. Saying
gets the whole works.

The next several sections describe the major messages; the
document closes with sections discussing the implementation
and giving suggestions for writing portable C. An appe~dix
gives a summary of the lint options.

1.1. A Word About Philosophy

Many of the facts which lint needs may be impossible to dis
cover. For example, whether a given function in a program
ever gets called may depend on the input data. Deciding
whether exit is ever called is equivalent to solving the
famous halting problem, known to be recursively undecidable.

Thus, most of the lint algorithms are a compromise. If a
function is neve]~ mentioned, it can never be called. If a
function is mentioned, lint a$sumes it can be called; this
is not necessarily so, but in practice is quite reasonable.

Lint tries to give information with a high degree of
relevance. Messaqes of the form "xxx might be a bug" are
easy to generate, but are acceptable only in proportion to
the fraction of real bugs they uncover. If this fraction of
real bugs is too small, the messages lose their credibility
and serve merely to clutter up the output, obscuring the

1-1 Zilog 1-1

LINT Zilog LINT

more important messages.

Keeping these issues in mind, we now consider in more detail
the classes of messages which lint produces.

1.2. Unused Variables and Functions

As sets of programs evolve and develop, previously used
variables and arguments to functions may become unused; it
is not uncommon for external variables, or even entire func
tions, to become unnecessary, and yet not be removed from
the sourceo These errors of commission rarely cause working
programs to fail, but they are a source of inefficiency, and
make programs harder to understand and change. Moreover,
information about such unused variables and functions can
occasionally serve to discover bugs; if a function does a
necessary job, and is never called, something is wrong!

Lint complains about variables and functions which are
defined but not otherwise mentioned. An excE~ption is vari
ables which are declared through explicit statements but are
never referenced; thus the statement

extern float sin();

will evoke no comment if sin is never used. Note that this
agrees with the semantics 01' the C compiler. In some cases,
these unused external declarations might be of some
interest; they can be discovered by adding the flag to the
lint invocation.

Certain styles of programming require many functions to be
written with similar interfaces; frequently, some of the
arguments may be unused in many of the calls. The option is
available to suppress the printing of complaints about
unused arguments. When is in effect, no messages are pro
duced about unused arguments except for those arguments
which are unused and also declared as register arguments;
this can be considered an active (and preventable) waste of
the register resources of the machine.

There 'is one case where information about unused, or unde
fined, variables is more distracting than helpful. This is
when lint is applied to some, but not all, files out of a
collection which are to be loaded together. In this case,
many of the functions and variables defined may not be used,
and, conversely, many functions and variables defined else
where may be used. The flag may be used to suppress the
spurious messages which might otherwise appear.

1-2 Zilog 1-2

LINT Zi log LINT

1.3. Set/Used Information

Lint attempts to detect cases where a variable is used
before it is set. This is very difficult to do well; many
algorithms take a good deal of time and space, and still
produce messages about perfectly valid programs. Lint
detects local variables (automatic and register storage
classes) whose first use appears physically earlier in the
input file than the first assignment to the variable. It
assumes that taking the address of a variable constitutes a
use, since the actual use may occur at any later time, in a
data dependent fashion.

The restriction to the physical appearance of variables in
the file makes the algorithm very simple and quick to imple
ment, since the true flow of control need not be discovered.
It does mean that lint can complain about some programs
which are legal, but these programs would probably be con
sidered bad on stylistic grounds (e.g. might contain at
least two goto's). Because static and external variables
are initialized to 0, no meaningful information can be
discovered about their uses. The algorithm deals correctly,
however, with initialized automatic variables, and variables
which are used in the expression which first sets them.

The set/used information also permits recognition of those
local variables which are s~t and never used; these form a
frequent source of inefficiencies, and may also be symp
tomatic of bugs.

1.4. Flow of Control

Lint attempts to detect unreachable portions of the programs
which it processes. It will complain about unlabeled state
ments immediately following goto, break, continue, or return
statements. An attempt is made to detect loops which can
never be left at the bottom, detecting the special cases
while(1) and f:or(;;) as infinite loops. Lint also com
plains about loops which cannot be entered at the top; some
valid programs may have such loops, but at best they are bad
style, at worst bugs.

Lint has an important area of blindness in the flow of con
trol algorithm: it has no way of detecting functions which
are called and never return. Thus, a call to exit may cause
unreachable code which lint does not detect; the most seri
ous effects of this: are ~the determination of returned
function values (see the next section).

1-3 Zilog 1-3

LINT Zilog LINT

One form of unreachable statement is not usually CQmplained
about by lint; a statement that cannot be reached causes no
message. ·Programs generated by yacc, and especi.ally lex
(see YACC - Yet Another Compiler-Compiler and LEX ·- A LeXT
cal Analyz,er), may have literally hundreds of unreachable
statements. The flag in the C compiler will often eliminate
the resulting object code inefficiency. Thus, these
unreached statements are of little importance, there is typ
ically nothing the user can do about them, and the resulting
messages would clutter up the lint output. If these mes
sages are desired, lint can be invoked with the opt-ion.

1.5. Function Values

Sometimes functions return values which are never used;
sometimes programs incorrectly use function "values" which
have never been returned. Lint addresses this problem in a
number of ways. --

Locally, within a function definition, the appearance of
both

return(expr);

and

return

statements is cause for alarm; lint will give the message

function name contains return(e) and return

The most serious difficulty with this is detecting when a
function return is implied by flow of control reaching the
end of the function. This can be seen with a simple exam
ple:

f a) {
if (a) return (3) ;
g () ;
}

Notice that, if ~ tests false, ! will call ~ and then return
with no defined return value; this will trigger a complaint
from lint. If ~' like exit, never returns, the message will
still be produced when in fact nothing is wrong.

In practice, some potentially serious bugs have been
discovered by this feature; it also accounts for a substan
tial fraction of the noise messages produced by lint.

1-4 Zilog 1-4

LINT Zilog LINT

On a global scale, lint detects cases where a function
returns a value, but this value is sometimes, or always,
unused. When the value is always unused, it may constitute
an inefficiency in the function definition. When the value
is sometimes unused, it may represent bad style (e.g., not
testing for error conditions).

The dual problem, using a function value when the function
does not return one, is also detected. This is a serious
problem. Amazingly, this bug has been observed on a couple
of occasions in "working" programs; the desired function
value just happened to have been computed in the function
return register!

1.6. Type Checking

Lint enforces the type checking rules of C more strictly
'than the compilers do. The additi.onal checking is in four
major areas: across certain binary operators and implied
assignments, at the structure sele·ction operators, between
the definition and uses of functions, and in the use of
enumerations.

There are a number of operators which have an implied
balancing between types of the operands. The assignment,
conditional (?:) , and relational O'perators have this pro
perty; the argument of a return statement, and expressions
used in initialization also suffer similar conversions. In
these operations, char, short, int, long, unsigned, float,
and double types may be freely intermixed. The types of
pointers must agree exactly, except that arrays of x's can,
of course, be intermixed with pointers to x's.

The type checking rules also require that, in structure
references, the left operahd of the -> be a pointer to
structure, the left operand of the • be a structure, and
the right operand of these operators be a member of the
structure implied by the left operand. Similar checking is
done for references to unions.

Strict rules apply to function argument and return value
matching. The types float and double may be freely matched,
as may the types char, short, int, and unsigned. Also,
pointers can be matched with the associated arrays. Aside
from this, all actual arguments must agree in type with
their declared counterparts.

With enumerations, checks are made that enumeration vari
ables or members are not mixed with other types, or other
enumerations, and that the only operations applied are =,

1-5 Zilog 1-5

LINT Zilog LINT

initialization, ==, !=, and function arguments and return
values.

1.7. Type Casts

The type cast feature in C was introduced largely as an aid
to producing more portable programs. Consider the assign
ment

p = 1 ;

where p is a character pointer. Lint will quite rightly
complain. Now, consider the assignment

p = (char *)l ;

in which a cast has been used to convert the integer to a
character pointer. The programmer obviously had a strong
motivation for doing this, and has clearly signaled his
intentions. It seems harsh for lint to continue to complain
about this. On the other hand, Tithis code is moved to
another machine, such code should be looked at carefully.
The flag controls the printing of comments about casts.
When is in effect, casts are treated as though they were
assignments subject to complaint; otherwise, all legal casts
are passed without comment, no matter how strange the type
mixing seems to be.

1. 8. Nonpoirtable Character Use

On the 88000, characters are signed quantities, with a range
from -128 to 127. On most of the other C implementations,
characters take on only positive values. Thus, lint will
flag certain comparisons and assignments as bE~ing illegal or
nonportable. For example, the fragment

char c;

if((c = getchar()) < 0) ••••

works ·on the 88000, but will fail on machines where charac
ters always take on positive values. The real solution is
to declare £ an integer, since getchar is actually returning
integer values. In any case, lint will say "nonportable
character comparison". --

A similar issue arises with bitf ields; when assignments of
constant values are made to bitfields, the field may be too
small to hold the value. This is especially true because on

1-6 Zilog 1-6

LINT Zilo9

some machines bitfields are considered as signed
While it may seem unintuitive to consider that
field declared of type cannot hold the value 3,
disappears if the bitfield is declared to
unsigned.

1.9. Assignments of longs to ints

LINT

quantities.
a two bit
the problem
have type

Bugs may arise from the assignment of long to an int which
loses accuracy. This may happen in programs which have been
incompletely converted to use typedefs. When a typedef
variable is changed from int to long# the program can stop
working because some intermediate results may be assigned to
ints, losing accuracy. Since there are a number of legiti
mate reasons for assigning longs to ints, the detection of
these assignments is enabled by the ~a flag.

1.18. Strange Constructions

Several perfectly legal, but somewhat strange, constructions
are flagged by lint; the messages hopefully encourage better
code quality, clearer style, and may even point out bugs.
The -h flag is used to- enable these checks. For example, in
the statement

*p++ ;

the * does nothing; this provokes the message "null effect"
from lint. The program fragment

unsigned x ;
if (x < 0)

is clearly somewhat strange; the test will never succeed.
Similarly, the test

if (x > 0) •••

is equivalent to

if (x != 0)

which may not be the intended action. Lint will say "degen
erate unsigned comparison" in these cases=- If one says

if(1 != 0) ••••

lint will report "constant in conditional context", since
the comparison of 1 with 0 gives a constant result.

1-7 Zilog 1-7

LINT Zilog LINT

Another construction detected by lint involves operator pre
cedence.. Bugs which arise from misunderstandings about the
precedence of operators can be accentuated by spacing and
formatting, making such bugs extremely hard to find. For
example, the statements

if(Xfc077 == 0) · •••

or

x<<2 + 40

probably do not do what was intended. The best solution is
to parenthesize such expressions, and lint encourages this
by an appropriate message.

Finally, when the -h flag is in force lint complains about
variables which are redeclared in inner blocks in a way that
conflicts with their use in outer blocks. This is legal,
but is considered by many to be bad style, usually unneces
sary, and frequently a bug.

1.11. Anc::ient History

There are several forms of older syntax which are being
officially discouraged. These fall into two classes,
assignment operators and initialization.

The older forms of assignment operators (e.g., =+, =-, ...
) could cause ambiguous expressions, such as

a =-1 ;

which could be taken as either

a =- 1

or

a = -1 ;

The situation is especially perplexing if this kind of ambi
guity arises as the result of a macro substitution. The
newer, and preferred operators (+=, -=, etc.) have no such
ambiguities. To spur the abandonment of the older forms,
lint complains about these old fashioned operators.

A similar issue arises with initialization.
language allowed

1-8 Zilog

1rhe older

1-8

LINT Zilog LINT

int x 1 ;

to initialize x to 1. This also caused syntactic difficul
ties: for example,

int x (-1)

looks somewhat like the beginning of a function declaration:

int x (y) {

and the compiler must read a fair ways past x in order to
sure what the declaration really is •• Again, the problem is
even more perplexing when the initializer involves a macro.
The current syntax places an equals sign between the vari
able and the initializer:

int x = -1 ;

This is free of any possible syntactic ambiguity.

1.12. Pointer Alignment

Certain pointer assignments may be reasonable on some
machines, and illegal on others, due entirely to alignment
restrictions. For example, on the PDP-11, it is reasonable
to assign integer pointers to double pointers, since double
precision values may begin on any integer boundary. On the
Honeywell 6000, double precision values must begin on even
word boundaries; thus, not all such assignments make sense.
Lint tries to detect cases where pointers are assigned to
other pointers, and such alignment problems might arise.
The message ·"possible pointer alignment problem" results
from this situation whenever either the -p or -h flags are
in effect. -

1.13. Multiple Uses and Side Effects

In complicated expressions, the best order in which to
evaluate subexpressions may be highly machine dependent.
For example, on stack machines function arguments will prob
ably be consistently evaluated either right-to-left or
left-to-right. But on the 88000, with function arguments
being passed in registers, the order of evaluation depends
on the complexity of the arguments: more complex arguments
are evaluated first. Similar issues arise with other opera
tors which have side effects, such as the assignment opera
tors and the increment and deqrement operators.

1-9 Zilog 1-9

LINT Zilog LINT

In order that the efficiency of C on a particular machine
not be unduly compromised, the C language leaves the order
of evaluation of complicated expressions up to the local
compiler, and, in fact, the various C compilers have consid
erable differences in the order in which they will evaluate
complicated expressions. In particular, if any variable is
changed by a side effect, and also used elsewhere in the
same expression, the result is explicitly undefined.

Lint checks for the important special case where a simple
scalar vari.able is affected. For example, the state!ment

~[_!.] = £[i++] ;

will draw the complaint:

warning: i evaluation order undefined

1.14. Implementation

Lint consists of two programs and a driver. The first pro
gram is a version of the Portable C Compiler which is the
basis of the 88000 and several other C compilers. This com
piler does lexical and syntax analysis on the input text,
constructs and maintains symbol tables, and builds trees for
expressions. Instead of writing an intermediate file which
is passed to a code generator, as the other compilers do,
lint produces an intermediate file which consists of lines
of ascii text. Each line contains an external variable
name, an encoding of the context in which it was seen (use,
definition, declaration, etc.), a type specifier, and a
source file name and line number. The information about
variables local to a function or file is collected by
accessing the symbol table, and examining the expression
trees.

Comments about local problems are produced as detected. The
information about external names is collected onto an inter
mediate file. After all the source files and library
descriptions have been collected, the intermediate file is
sorted to bring all information collected about a given
external name together. The second, rather small, program
then reads the lines from the intermediate file and compares
all of the definitions, declarations, and uses for con
sistency.

The driver controls this process, and is also responsible
for making the options available to both passes of lint.

1-10 Zilog 1-10

LINT Zilog LINT

1.15. Portability

C is used in many installations, in part, to write system
code for the host operating system. This means that the
implementation of C tends to follow local conventions rather
than adhere strictly to any one operating system's conven
tions. Despite these differences, many C programs have been
successfully moved to various systems with little effort.
This section describes some of the differences among imple
mentations, and discusses the lint features which encourage
portability.

Uninitialized external variables are treated differently in
different implementations of c. Suppose two files both con
tain a declaration without initialization, such as

int a ;

outside of any function. The ZEUS loader will resolve these
declarations, and cause only a single word of storage to be
set aside for a. Under some implementations of C, this is
not feasible, so each such declaration causes a word of
storage to be set aside and called a. When loading or
library editing takes place, this causes fatal conflicts
which prevent the proper operation of the program. If lint
is invoked with the -p flag, it will detect such multiple
definitions.

A related difficulty comes from the amount of information
retained about external names during the loading process.
On the ZEUS system, externally known names have seven signi
ficant characters, with the upper/lower case distinction
kept. On some other systems there are from six to eight
significant characters; the case distinction is often lost.
This leads to situations where programs run on the ZEUS sys
tem, but encounter loader problems elsewhere. Lint -_E
causes all external symbols to be mapped to one case and
truncated to six characters, providing a worst-case
analysis.

A number of differences arise in the area of character han
dling: characters in the ZEUS system are eight bit ascii;
other 'systems may use a different number of bits or ebcidic
in place of ascii. Moreover, character strings go from high
to low bit positions ("left to right") on ZEUS, but from low
to high ("right to left") on other systems. This means that
code attempting to construct strings out of character con
stants, or attempting to use characters as indices into
arrays, must be looked at with great suspicion. Lint is of
little help here, except to flag multi-character character
constants.

1-11 Zilog 1-11

LINT Zilog LINT

Of course, the word sizes are different! This can cause
trouble when moving code to ZEUS from a machine with a word
size greater than 16 bits; moving from ZEUS to a larger word
size should be less difficult. When problems do arise, they
are likely to be in shifting or masking. C now supports a
bit-field facility, which can be used to write much of this
code in a reasonably portable way. Frequently, portability
of such code can be enhanced by slight rearrangements in
coding style. Many of the incompatibilities seem to have
the flavor of writing

x &= 0177700 ;

to clear the low order six bits of x. This suffices on the
88000, but fails badly on some implementations. If the bit
field feature cannot be used, the same effect can be
obtained by writing

x &= - 077 ;

which should work on all machines.

The right shift operator is arithmetic shift on the 88000,
and logical shift on many other machines. To obtain a logi
cal shift on all machines, the left operand can be typed
unsigned. Characters are considered signed integers on the
88000, and unsigned on many other machines. If there were a
good way to discover the programs which would be affected, C
could be changed; in any case, lint is no help here.

The above discussion may have made the problem of portabil
ity seem bigger than it in fact is. The issues involved
here are rarely subtle or mysterious, at least to the imple
mentor of the program, although they can involve some work
to straighten out.

1.16. Shutting Lint Up

There are occasions when the programmer is smarter than
lint. There may be valid reasons for "illegal" type casts,
functions with a variable number of arguments, etc. More
over, as specified above, the flow of control information
produced by lint often has blind spots, causing occasional
spurious messages about perfectly reasonable programs.
Thus, some way of communicating with lint, typically to shut
it up, is desirable. ~~

The form which this mechanism should take is not at all
clear. New keywords would require current and old compilers
to recognize these keywords, if only to ignore them. This

1-12 Zilog 1-12

LINT Zilog LINT

has both philosophical and practical problems. New prepro
cessor syntax suffers from similar problems.

What was finally done was to cause a number of words to be
recognized by lint when they were embedded in comments.
This required minim:il preprocessor changes; the preprocessor
just had to agree to pass comments through to its output,
instead of deleting them as had been previously done. Thus,
lint directives are invisible to the compilers, and the
effect on systems with the older preprocessors is merely
that the lint directives don't work.

The first directive is concerned with flow of control infor
mation; if a particular place in the program cannot be
reached, but this is not apparent to lint, this can be
asserted by the directive

/* NOTREACHED *'/

at the appropriate spot in the program. Similarly, if it is
desired to turn off strict type checking for the next
expression, the directive

/* NOSTRICT */

can be used; the situation reJerts to the previous default
after the next expression. The -v flag can be turned on for
one function by the directive

/* ARGSUSED */

Complaints about variable number of arguments in calls to a
function can be turned off by the directive

/* VARARGS */

preceding the function definition. In some cases, it is
desirable to check the firat several arguments, and leave
the later arguments unchecked. This can be done by follow
ing the VARARGS keyword immediately with a digit giving the
number of arguments which should be checked; thus,

/* VARARGS2 */

will cause the first two argu~ents to be checked, the others
unchecked. Finally, the diredtive

/* LINTLIBRARY */

at the head of a file identifies this file as a library
declaration file; this topic is worth a section by itself.

1-13 Zilog 1-13

LINT Zilog LINT

1.17. Library Declaration Files

Lint accepts certain library directives, such as

-ly

and tests the source files for compatibility with these
libraries. This is done by accessing library description
files whose names are constructed from the library direc
tives. These files all begin with the directive

/* LINTLIBRARY */

which is followed by a series of dummy function definitions.
The critical parts of these definitions are the declaration
of the function return type, whether the dummy function
returns a value, and the number and types of arguments to
the function. The VARARGS and ARGSUSED directives can be
used to specify features of the library functions.

Lint library files are processed almost exactly like ordi
nary source files. The only difference is that functions
which are defined on a library file, but are not used on a
source file, draw no complaints. Lint does not simulate a
full library search algorithm, and complains if thE~ source
files contain a redefinition of a library routine (this is a
feature 1).

By default, lint checks the programs it is given against a
standard library file, which contains descriptions of the
programs which are normally loaded when a C program is run.
When the flag is in effect, another file is checked contain
ing descriptions of the standard I/O library routines which
are expected to be portable across various machines. The
flag can be used to suppress all library checking.

1.18. Bugs, etc.

A number of lint features remain to be further developed.
The checking of structures and arrays is rather inadequate;
size incompatibilities go unchecked, and no attempt is made
to m~tch up structure and union declarations across files.
Some stricter checking of the use of the typedef is clearly
desirable, but what checking is appropriate, and how to
carry it out, is still to be determined.

Lint shares the preprocessor with the C compiler. At some
Polnt it may be appropriate for a special version of the
preprocessor to be constructed which checks for things such
as unused macro definitions, macro arguments which have side

1-14 Zilog 1-14

LINT Zilog LINT

effects which are not expanded at all, or are expanded more
than once, etc.

The central problem with lint is the packaging of the infor
mation which it collectS:.-- There are many options which
serve only to turn off, or slightly modify, certain
features.

In conclusion, it appears that the general notion of having
two programs is a good one. The compiler concentrates on
quickly and accurately turning the program text into bits
which can be run; lint concentrates on issues of portabil
ity, style, and effiCTency. L.int can afford to be wrong,
since incorrectness and over=conservatism are merely annoy
ing, not fatal. The compiler can be fast since it knows
that lint will cover its flanks. Finally, the programmer
can concentrate at one stage of the programming process
solely on the algorithms, data structures, and correctness
of the program, and then later retrofit, with the aid of
lint, the desirable properties of universality and portabil
ity ..

l·-15 Zilog 1-15

LINT Zilog

APPENDIX A
Current Lint Options

The command currently has the form

lint [-options] files ••• library-descriptors •••

The options are

h Perform heuristic checks

p Perform portability checks

v Don't report unused arguments

u Don't report unused or undefined externals

b Report unreachable statements.

x Report unused external declarations

a Report assignments of to or shorter.

c Complain about questionable casts

n No library checking is done

s Same as (for historical reasons)

A-1 Zilog

LINT

A-1

MAKE *

* This information is based on an article originally written by
S.I. Feldman, Bell Laboratories.

MAKE Zilog MAKE

ii Zilog ii

MAKE Zilog MAKE

Preface

This document describes make, a program that simplifies the
process of updating program files. Section 1 describes the
purpose and function of make. Sections 2 and 3 supply
information needed to use the program. The reader should be
familiar with the ZEUS Operating System and with programming
in C or PLZ/SYS.

iii Zilog iii

MAKE Zilog MAKE

iv Zilog iv

MAKE Zilog

Table of Contents

SECTION 1 INTRODUCTION .
1.1. Using Ma_k~ •••••••••••.•••••••••••••••••••••••••

SECTION 2 BASIC FE:ATURES .
2.1.
2.2.
2.3.
2.4.

Pro g ram Ope rat ion • • • • . • • • • • • • • • • • • • • • • • •
Programming Example •••••••••••••••••••
File Generation and Macro Substitution
Description Files ••••••••••••••••••••••

SECTION 3 COMMAND USAGE .

v

3.1.
3.2.
3.3.
3.4.
3.5.

Arg um en ts ••••••••••••••••••••••••••••
Implicit Rules •••••••••••••••••••
Suffixes and Transformation Rules •••
Sample Program •••••••••••
Suggestions and Warnings

Zilog

.

.

. . . .

MAKE

1-1

1-1

2-1

2-1
2-1
2-2
2-3

3-1

3-1
3-2
3-3
3-4
3-6

v

MAKE

lal. Using Make

Zilog

SECTION 1
INTRODUCTION

MAKE

In a programming project, it is common practice to divide
large programs into smaller, more manageable pieces. Unfor
tunately, it is very easy for a programmer to forget which
files depend on others, which files have been modified
recently, and the exact sequence of operations needed to
make or execute a new version of the program. After a long
editing session, it is easy to lose track of which files
have been changed and which object modules are still valid,
since a change to a declaration can obsolete a dozen other
files. Forgetting to compile a routine that has been
changed or that uses changed declarations results in a pro
gram that does not work and a bug that can be very hard to
track down. On the other hand, recompiling everything just
to be safe is very wasteful.

Using the program make is a simple method for maintaining
up-to-date version~;-of programs that are a product of many
operations on numbers of files. If the information on
interfile dependencies and command sequences is stored in a
description file, the simple command

make

is usually sufficient to update the relevant files, regard
less of the number that have been edited since the last
make. In most cases, the description file is easy to write
and changes infrequently. It is usually easier to type the
make command than to issue even one of the needed opera
tions, so the typical cycle of program development opera
tions becomes

think - edit - make - test

The make command creates the proper files simply, correctly,
and with a minimum amount of effort. It also includes a
simple macro substitution facility and encloses commands in
a single file for convenient administration.

Make is most useful for medium-sized programming projects;
~ does not solvE~ the problems of maintaining multiple
source versions or of describing huge programs.

1-1 Zilog 1-1

MAKE

2.1. Program Operation

Zilog

SECTION 2
BASIC FEATURES

MAKE

The basic operation of make is to find the name of a needed
target file and update ~by ensuring that all of the files
on which it depends exist and are up to date. It then
creates the target if it has not been modified since the
last modification of its dependents. Make does a depth
first search of the •::iraph of dependencies:- The operation of
the command depends on the availability of the date and time
that a file was last modified.

2.2. Programming Example

A program named prog is made by compiling and loading three
C language files, x.c, y.c, and z.c, with the le library.
By convention, the output of the C compilations is found in
files named x.o, Y·£, and ~·£· Assume that the files x.c
and y.c share some declarations in a file named defs, but
that-z~c does not. That is, x.c and Y·£ have the line

#include "defs"

The following text describes the relationships and opera
tions:

prog: x.o y.o z.o
cc x.o y.o z.o -le -o prog

x.o y.o: defs

If this information is stored in a file named makefile, the
command

make

perfor'ms the operations needed to recreate prog after any
changes are made to any of the four source files ~·£1 y.£1
~·£1 or defs.

Make uses three sources of information, a user-supplied
description file, file names and last-modified times from
the file system, and built-in rules that bridge some of the
gaps. In this example, the first line indicates that prog
depends on three object (.o) files. Once these object files

2-1 Zilog 2-1

MAKE Zilog MAKE

are current, the second line describes how to load them to
create p ~~. The th i rd 1 in e i n d i cat es that x • o and y. 2.
depend on the file defs. From the file system, make discov
ers that there are three C source (.c) file:s corresponding
to the needed .o files, and uses built-in information on how
to generate an object from a source file (issue a cc -c com
mand).

The following description file is equivalent to makefile but
does not take advantage of make'~ built-in information.

prog: x.o y.o z.o
cc x.o y.o z.o -le -o prog

x.o: x.c def s
cc -c x.c

y.o: y.c def s
cc -c y.c

z.o: z.c
cc -c z.c

If none of the source or object files have changed since the
last tim«~ .E.!.£9. was made, all of the files an~ current.
Issuing the command

make

causes the program to anno~nce this fact and stop. If, how
ever, the defs file has been edited, .!·.£and y.c (but not
Z.£) are recompiled, and prog is created from th4~ new .o
Tiles. If only the file Y·.£ has changed, that file alone is
recompiled, but it is still necessary to reload pr4~.

If no target name is given on the make command line, the
first tarqet mentioned in the description is creat«~d; other
wise the specified targets are made.

In the makefile example,

make :< .o

recompiles x.o if x.c or defs have changed.

2.3. File Generation and Macro Substitution

It is useful to include rules with mnemonic names and com
mands that do not actually produce a file with that name.
These entries use make's ability to generate files and sub
stitute macros. For -example, an entry called save can be
included to copy a certain set of files, or an entry called
cleanup can be used to throw away unneeded intermediate

2-2 Zilog 2-2

MAKE Zilog

files. A zero-length file can. be maintained to
of the time when certain actions were performed.
nique is useful for maintaining remote archives
ings.

MAKE

keep track
This tech
and list-

Make has a simple macro mechanism for making substitutions
in dependency lines and command strings. Macros are defined
by command arguments or description file lines with embedded
equal signs. A macro is invoked by preceding the name with
a dollar sign. Macro names longer than one character must
be enclosed in parentheses or braces. The following are
valid macro invocations:

$ (CFLAGS)
$2
$(xy)
$2
$ (z)
${Z}

The last three invocations are identical. All of these mac
ros are assigned values during input, as shown below~ (Four
special macros change values during the execution of the
command: $*, $@, $?, and $<. See Section 2.4.)

OBJECTS = x.o y.o z.o
LIBES = -le
prog: $(OBJECTS)

cc $(OBJECTS) $(LIBES) -o prog

The command

make

loads the three object files with the le library. The com
mand

make "LIBES= -lm -le"

loads them with both the math (-lm) and the standard (-le)
libraries, since macro definitions on the command line over
ride definitions in the description. (In ZEUS commands, it
is necessary to enclose arguments with embedded blanks in
quotes.)

2.4. Description Files

A description file
macro definitions,

2-3

contains three types of information:
dependency information, and executable

Zilog 2-3

MAKE Zilog MAKE

commands.

A macro definition is a line that contains an equal sign
that is not preceded by a colon or a tab. The name (string
of letters and digits) to the left of the equal sign is
assigned the string of characters following the equal sign
(trailing and leading blanks and tabs are stripped out).
The following are valid macro definitions:

2 = xy:2';
abc = -lm -lmp -le
LIBES ==

The last definition assigns the null string to LIBES. A
macro that is never explicitly defined has the null string
as its value. Macro definitions can also appear on the make
command line (Section 3.1).

Other lines give information about target files.
eral form of an entry is:

~rhe gen-

ta r g et 1 [ta r g et 2 • • •] : [:] [d e pendent 1. • •] [; co mm ands] [# • • •]
[(tab) commands] [# •••]

Items inside brackets can be omitted. Targets and depen
dents are strings of letters, digits, periods, and slashes.
(Shell metacharacters * and ? are expanded.) A command is
any string of characters not including a # (unless in
quotes) or new line. Commands can appear either after a
semicolon on a dependency line or on lines beginning with a
tab immediately following a dependency line.

If a line begins with a sharp (#), all characters after the
are ignored, as is the # itself. Blank lines also are
totally ignored. If a noncomment line is too long, it can
be continued using a backslash. If the last character of a
line is a backslash, the backslash, new line, and following
blanks and tabs are replaced by a single blank.

A dependency line can have either a single or a double
colon. A target name can appear on more than one dependency
line, 'but all of those lines must be of the same (single or
double colon) type.

For the single colon case, no more than one dependency line
can have a command sequence associated with it. If the tar
get is out of date with any of the dependents on any of the
lines and a command sequence is specified (even a null one
following a semicolon or tab), it is executed; otherwise, a
default creation rule can be invoked.

2-4 Zilog 2-4

MAKE Zilog MAKE

In the double colon case, a command sequence can be associ
ated with each dependency line; if the target is out of date
with any of the files on a particular line, the associated
commands are executed. A built-in rule can also be exe
cuted. This detailed form is of particular value in updat
ing archive-type files.

If a target must be created, the sequence of commands is
executed. Normally, each command line is· printed and then
passed to a separate invocation of the shell after substi
tuting for macros. The printing is suppressed in silent
mode or if the command line begins with an @ sign. Make
normally stops if any command signals an error by returnTng
a nonzero error codE~. Errors are ignored if the -i flag has
been specified on the make command line, if the target name
.IGNORE appears in the description file, or if the command
string in the description file begins with a hyphen. Some
ZEUS commands return meaningless status.

Because each command line is passed to a separate invocation
of the shell, care must be taken with certain commands (such
as cd and shell control commands) that have meaning only
within a single shell process; the results are forgotten
before the next line is executed.

Before issuing any command, certain macros are set. $@ is
set to the name of the file.to be made. $?is set to the
string of names that are found to be newer than the target.
If the command was generated by an implicit rule (Section
3.2), $<is the name of the related file that caused the
action, and $* is the prefix shared by the current and the
dependent file names.

If a file must be made but there are no explicit commands or
relevant built-in rules, the commands associated with the
name .DEFAULT are used. If there is no such name, make
prints a message and stops.

Targets and dependents are usually file names. A special
notation exists for targets or dependents within archives
ar(l). The notation

archive(file)

or

archive((entry point))

refers to the file within the archive. Modification dates
are based on the dates stored within the archive, not the
archive itself. For example,

2-5 Zilog 2-5

MAKE Zilog MAKE

libc.a (printf.o)

or

libc.a (_printf))

refer to the object module printf .o in the archive libc.a.

2-6 Zilog 2-6

MAKE Zilog

SECTION 3
COMMAND USAGE

MAKE

3.1. Arguments

The make command takes four kinds of arguments: macro defin
itio~ flags, description file names, and target file
names.

make [flags] [macro definitions] [targets]

The following summary of the operation of the command
explains how these arguments are interpreted.

First, all macro definition arguments (arguments with embed
ded equal signs) are analyzed and the assignments made.
Command-line macros override corresponding definitions found
in the description files.

Next, the flag arguments are examined.
flags are:

The permissible

-d Debug mode. Print out detailed information on files
and times examined.

-f Description file name. The next argument is assumed to
be the name of a description file. The file name dash
(-) denotes the standard input. If there are no -f I
arguments, the file named makefile (or Makefile) in the
current directory is read. The contents of the
description files override the built-in rules if they
are present.

-i Ignore error codes returned by invoked commands. This
mode is entered if the target name .IGNORE appears in
the description file.

-n No execute mode. Print commands, but do not execute
them. Even lines beginning with an @ sign are printed.

-p Print out the complete set of macro definitions and
target descriptions.

-q Question. The make command returns a zero or nonzero
status code depending on whether the target file is or
·1 s not up to da1te.

3-1 Zilog 3-1

MAKE Zilog MAKE

-r Do not use the built-in rules.

-s Silent mode. Do not print command lines before execut
ing. This mode is also entered if the target name
.SILENT appears in the description file~

-t Touch the target files (causing them to be up to date)
rather than issue the usual commands.

The remaining arguments are assumed to be the names of tar
gets to be made; they are done in left-to-right order. If
there are no such arguments, the first name in the descrip
tion files that does not begin with a period is made.

3.2. Implicit Rules

The make program uses a table of common suffixes and a set
of transformation rules to supply default dependency infor
mation and implied commands. The default suffix list is:

.o Object file

.c C source file

.p PLZ/SYS source file

.s Assembler source file

.y Yacc-C source grammar

The following diagram summarizes the default transformation
paths. If there are two paths connecting a pair of suf
fixes, the longer one is used only if the intermediate file
exists or is named in the description •

• o
I I \ \

.c .p .s .y
I

.y

If the file x.o is needed and there is an x.c in the
description or-directory, x.c is compiled. If there is also
an x.~, that grammar is run through Yacc before the result
is compiled. However, if there is no x.c but there is an
x.y, make discards the intermediate C language filE~ and uses
the direct link in the graph above.

If the macro names being used are known, it is possible to
change the names of some of the compilers used in the
default, or the flag arguments with which they are invoked.
The compiler names are the macros AS, CC, PLZ, and YACC.
The command

3-2 Zilog 3-2

MAKE Zilog MAKE

make CC=newcc

causes the newcc command to be used instead of the usual C
compiler. The macros CFLAGS, PFLAGS, and YFLAGS can be set
to cause these commands to be issued with optional flags.
Thus,

make "CFLAGS=-0 111

causes the optimizing C compiler to be used.

3.3. Suffixes and Transformation Rules

The make program itself does not recognize whether or not
file name suffixes are relevant; it cannot transform a file
with one suffix into a file with another suffix. This
information is stored in an internal table that has the form
of a description file. If the -r flag is used, this table
is not used.

The list of suffixes is actually the dependency list for the
name .SUFFIXES; make looks for a file with any of the suf
fixes on the list.~If such a file exists, and if there is a
transformation rule for that combination, make proceeds nor
mally. The transformation rul~ names are the concatenation
of the two suffixes. The n~me of the rule to transform a
PLZ/SYS source (.p) file to a .o file is thus .p.a. If the
rule is present and no explicit command sequence has been
given in the user's description files, the command sequence
for the rule .p.o is used. If a command is generated by
using one of these suffixing rules, the macro $* is given
the value of the stem (everything but the suffix) of the
name of the file to be made, and the macro $< is the name of
the dependent that caused the action.

The order of the suffix list is significant; it is scanned
from left to right, and make uses the first name that is
formed that has both a file ari'<'.ra rule associated with it.
If new names are to be appended, just add an entry for .SUF
FIXES in the description file; the dependents will be added
to the usual list. A .SUFFIXES line without any dependents
deletes the current list. (It is necessary to clear the
current list if the order of names is to be changed.)

The following is an excerpt from the default rules file:

3-3

.SUFFIXES : .o .c .p .y .s
YACC=yacc
YACCR=yacc -r
YACCE=yacc -e

Zilog 3-3

MAKE Zilog

YFLAGS=
CC=cc
AS=as -u
CF LAGS=
PLZ=plz
PF LAGS=
.c.o

.p.o

.s.o

.y.o

.y.c

$(CC) $(CFLAGS) -c $<

$(PLZ) $(PFLAGS) -c $<

$(AS) -o $@ $<

$(YACC) $(YFLAGS) $<
$(CC) $(CFLAGS) -c y.tab.c
rm y.tab.c
mv y.tab.o $@

$(YACC) $(YFLAGS) $<
mv y.tab.o $@

MAKE

3.4. Sample Program

As an example of the use of make, the description file used
to maintain the make command itself is given. The code for
make is spread over a number of C source fi le!S and a Yacc
grammar. The description file contains:

3-4

Description file for the Make command

P = lpr
FILES = Makefile version.c defs main.c doname.c misc.c

files.c dosys.c gram.y
OBJECTS = version.o main.o doname.o misc.o files.o

dosys.o gram.o
LIBES= -lS
LINT = lint -p
CFLAGS = -0

make: $(OBJECTS)
cc $(CFLAGS) $(OBJECTS) $(LIBES) -o make
size make

$(OBJECTS): defs

cleanup:
-rm *.o gram.c
-du

Zilog 3-4

MAKE Zilog MAKE

install:

print:

test:

lint:

@size make /usr/bin/make
cp make /usr/bin/make ; rm make
$(FILES) # print recently changed files
pr ~>? I $P
touch print

make -dp I grep -v TIME >lzap
/usr/bin/make ~dp I grep -v TIME >2zap
diff lzap 2zap
rm lzap 2zap

dosys.c doname.c files.c main.c misc.c I
version.c gram.c
$(LINT) dosys.c doname.c files.c main.c /
misc.c version.c gram.c rm gram.c

Make displays each command before issuing it. The following
output results from typing the simple command

make

in a directory containing only the source and description
file:

cc -c version.c
cc -c main.c
cc -c doname.c
cc -c misc.c
cc -c files.c
cc -c dosys.c
yacc gram.y
mv y.tab.c gram~c
cc -c gram.c
cc version.a main.o doname.o rnisc.o files.a dosys.o

gram.o -ls -o make
13188+3348+3044 = 19580b = 046174b

Although none of the source files or grammars are mentioned
by name in the description file, make finds them using its
suffix rules and issues the needed comman<ls. The string of
digits results from the size make command; the printing of
the command line itself is suppressed by an @ sign. The @
sign on the size command in the description file suppresses
the printing of the command, so only the sizes are written.

The last few entries in the description file are useful
maintenance sequences. The print entry prints only the
files that have been changed since the last make print com
mand. A zero-length file print is maintained to keep track

3-5 Zilog 3-5

MAKE Zilog MAKE

of the time of the
line then picks up
print was touched.
ferent printer or
the P macro:

printing; the $? macro in the command
only the names of the files changed since

The printed output can be sent to a dif
to a file by changing the definition of

make print "P = opr -sp"
or

make print "P= cat >zap"

3.5. Suggestions and Warnings

The most common difficulties arise from make's specific
meaning of dependency. If file x.c has an----rrrlclUtde "defs"
line, then the object file x.o depends on defs; the source
file x.c does not. (If defs Ts changed, itl~ not necessary
to do-anything to the fire-x.c, but it is nece!ssary to
recreate ~~·.2.·) - -

To discover what make would do, the -n option is very use
ful. The command

make -·n

orders make to print out the commands it would issue without
actually-e~ecuting them.

If a change to a file is absolutely certain to be benign
(for example, adding a new definition to an include file),
the -t (touch) option can save a lot of time. Instead of
issuing a large number of superfluous recompilations, make
updates the modification times on the affected fil€!. T'filiS;
the command

make -·ts

(touch silently) causes the relevant files to appear up to
date. Obvious care is necessary, since this mode of opera
tion subverts the intention of make and destroys all memory
of the previous relationships.

The debug9ing flag (-d) causes make to print out a very
detailed description of what it is doing, including the file
times. The output is verbose, so this option is recommended
only as a last resort.

3-6 Zilog 3-6

~rhe M4 MACRO PROCESSOR*

* This information is based on an article
originally written by Brian W. Kernighan

and Dennis M. Ritchie.

M4 Zilog M4

ii Zilog ii

M4 Zilog

Table of Contents

SECTION 1 The M4 Macro Processor

iii

1.1.
1. 2.
1. 3.
1. 4.
1. 5.
1. 6.
1. 7.
1. 8.

Introduction
Usage
Defining Macros
Quoting
Arguments
Arithmetic Built-ins
File Manipulation
System Command •••

. . .

1.9. Conditionals
1.10. String Manipulation
l.11. Printing
1.12. Summary of Built-ins
1.13. Acknowledgements
1.14. References •••••••••••

Zilog

.

M4

1-1

1-1
1-2
1-2
1-4
1-5
1-7
1-8
1-9
1-9

1-10
1-11
1-11
1-12
1-12

iii

M4 Zilog M4

SECTl,ON 1
The M4 Macro Processor

M4 is a macro processor available on ZEUS. Its primary use
has been as a front end for Ratfor for those cases where
parameterless macros are not adequately powerful. It has
also been used for languages as disparate as C and Cobol.
M4 is particularly suited for functional languages like For
tran, PL/I and C since macros are specified in a functional
notation.

M4 provides features seldom found even in much larger macro
processors, including

$ arguments

$ condition testing

$ arithmetic capabilities

$ string and substring functions

$ file manipulation

This paper is a user's manual for M4.

1.1. Introduction

A macro processor is a useful way to enhance a programming
language, to make it more palatable or more readable, or to
tailor it to a particular application. The #define state
ment in C and the analogous define in Ratfor are examples of
the basic facility provided by any macro processor
replacement of text by other text.

The M4 macro processor is an extension of a macro processor
called M3 which was written by D. M. Ritchie for the AP-3
minicomputer; M3 was in turn based on a macro processor
implemented for [l]. Readers unfamiliar with the basic
ideas of macro processing may wish to read some of the dis
cussion there.

M4 is a suitable front end for Ratfor and C, and has also
been used successfully with Cobol. Besides the straightfor
ward replacement of one string of text by another, it pro
vides macros with arguments, conditional macro expansion,
arithmetic, file manipulation, and some specialized string

1-1 Zilog 1-1

M4 Zilog M4

processing functions.

The basic operation of M4 is to copy its input to its out
put. As the input is read, however, each alphanumeric
"token" (that is, string of letters and digits) is checked.
If it is the name of a macro, then the name of the macro is
replaced by its defining text, and the resulting string is
pushed back onto the input to be rescannedo Macros may be
called with arguments, in which case the arguments are col
lected and substituted into the right places in the defining
text before it is rescanned.

M4 provides a collection of about twenty built-in macros
which perform various useful operations; in addition, the
user can define new macros. Built-ins and user-defined mac
ros work exactly the same way, except that some of the
built-in macros have side effects on the state of the pro
cess.

1.2. Usa9e

On ZEUS u~;e

m4 [files]

Each argument file is processed in order; if there are no
arguments A' or if an argument is ' - ', the standard input is
read at that point. The processed text is written on the
standard output, which may be captured for subsequent pro
cessing w:ith

m4 [files] >outputfile

1.3. Defining Macros

The primary built-in function of M4 is define, which is used
to define new macros. The input

define(name, stuff)

causes the string name to be defined as stuff. All subse
quent occurrences of name will be replaced by stuff. name
must be alphanumeric and must begin with a letter (the
underscore counts as a letter) • stuff is any text that
contains balanced parentheses; it can stretch over multiple
lines.

1-2 Zilog 1-2

M4 Zilog M4

Thus, as a typical example,

define (N, 100)

if (i > N)

defines N to be Hrn, and uses this "symbolic constant" in a
later if statement~

The left parenthesis must im~ediately follow the word
define, to signal that define has arguments. If a macro or
built-in name is not followed immediately by '(', it is
assumed to have no arguments. This is the situation for N
above; it is actually a macro with no arguments, and thus
when it is used there need be no (•••) following it.

You should also notice that a macro name is only recognized
as such if it appears surrounded by non-alphanumerics. For
example, in

define (N, 100)

if (NNN > 100)

the variable NNN is absolutely unrelated to the defined
macro N, even though it contains a lot of N's.

Things may be defined in terms of other things. For exam
ple,

define (N, 100)
define(M, N)

defines both M and N to be 100.

What happens if N is redefined? Or, to say it another way,
is M defined as N or as 100? In M4, the latter is true - M
is 100, so even if N subsequently changes, M does not.

This behavior arises because M4 expands macro names into
their defining text as soon ~s it possibly can. Here, that
means that when the string N is seen as the arguments of
define are being collected, it is immediately replaced by
100; it's just as if you had said

define(M, 100)

in the first place.

If this isn't what you really want, there are two ways out
of it. The first, which is specific to this situation, is

1-3 Zilog 1-3

M4 Zilog

to interchange the order of the definitions:

define (M, N)
define(N, 100)

M4

Now M is defined to be the string N, so when you ask for M
later, you'll always get the value of N at that time
(because the M will be replaced by N which will be replaced
by 100) •

1.4. Quoting

The more general solution is to delay the expansion of the
arguments of define by quoting them. Any text surrounded by
the single quotes ' and ' is not expanded immediately, but
has the quotes stripped off. If you say

define (N, 100)
define(M, 'N')

the quotes around the N are stripped off as the argument is
being collected, but they have served their purpose, and M
is defined as the string N, not 100. The general rule is
that M4 always strips off one level of single quotes when
ever it evaluates something. This is true even outside of
macros. If you want the word define to appear in the out
put, you have to quote it in the input, as in

'define' = l;

As another instance of the same thing, which is a bit more
surprising, consider redefining N:

define· (N, 100)

define~(N, 200)

Perhaps regrettably, the N in the second definition is
evaluated as soon as it's seen; that is, it is replaced by
100, so it's as if you had written

define!(l00, 200)

This statement is ignored by M4, since you can only define
things that look like names, but it obviously doesn't have
the effect you wanted. To really redefine N, you must delay
the evaluation by quoting:

1-4 Zilog 1-4

M4 Zilog M4

define(N, 100)

define('N', 200)

In M4, it is often wise to qudte the first argument of a
macro.

If ' and ' are not convenient for some r~ason, the quote
characters can be changed with the built-in changequote:

changequote([,])

makes the new quote characters the left and right brackets.
You can restore the original characters with just

changequote

There are two additional built~ins related to define. unde
fine removes the definition of some macro or built-in:

undef ine (' N')

removes the definition of N. (Why are the quotes absolutely
necessary?) Built-ins can be removed with undefine, as in

undefine('define')

but once you remove one, you can never get it back.

The built-in ifdef provides a way to determine if a macro is
currently defined. In particular, M4 has pre-defined the
names unix and gcos on the corresponding systems, so you can
tell which one you're using:

ifdef('unix', 'define(wordsize,16)'
ifdef('gcos', 'define(wordsize,36)'

makes a definition appropriate for the particular machine.
Don't forget the quotes!

ifdef actually permits three a~guments; if the name is unde
fined, the value of ifdef is then the third argument, as in

ifdef ('unix', on UNIX, not on UNIX)

1 .. 5. Arguments

So far we have discussed the simplest form of macro process
ing replacing one string by another (fixed) string.

1--5 Zilog 1-5

M4 Zilog M4

User-defined macros may also have arguments, so different
invocations can have different results. Within the replace
ment text for a macro (the second argument of its define)
any occurrence of $n will be replaced by the nth argument
when the macro is actually used. Thus, the macro bump,
defined as

define(bump, $1 = $1 + 1)

generates code to increment its argument by l:

bump (x)

is

x == x + 1

A macro can have as many arguments as you want, but only the
first nine are accessible, through $1 to $9. (The macro
name itself is $9, although that is less commonly used.)
Arguments that are not supplied are replaced by null
strings, so we can define a macro cat which simply concaten
ates its arguments, like this:

define(cat, $1$2$3$4$5$6$7$8$9)

Thus

cat (x •' y, z)

is equivalent to

xyz

$4 through $9 are null, since no corresponding arguments
were provided.

Leading unquoted blanks, tabs, or newlines that occur during
argument collection are discarded. All othe:r whitE~ space is
retained. Thus

jefine(a, b c)

defines a to be b c.

Arguments are separated by commas, but parentheses are
counted properly, so a comma "protected" by parentheses does
not terminate an argument. That is, in

definE?(a, (b,c))

1-6 Zilog 1-6

M4 Zilog M4

there are only two arguments; the second is literally (b,c).
And of course a bare comma or parenthesis can be inserted by
quoting it.

1.6. Arithmetic Built-ins

M4 provides two built-in functions for doing arithmetic on
integers (only) • The simplest is incr, which increments its
numeric argument by 1. Thus to handle the common program
ming situation where you want a variable to be defined as
"one more than N", write

define{N, 100)
define (Nl, 'incr (N) ')

Then Nl is defined as one more than the current value of N.

The more general mechanism for arithmetic is a built-in
called eval, which is cap~ble of arbitrary arithmetic on
integers. It provides the operators (in decreasing order of
precedence)

unary + and -
** or A (exponentiation)
* I % (modulus)
+ ,_ .-
& or &&
I or 11

< <= > >=
(not)

(logical and)
(logical or)

Parentheses may be
All the operands
rnately be numeric.
(like 1>0) is 1,
32 bits on ZEUS.

used to group operations where needed.
of an expression given to eval must ulti

The numerip value of a true relation
and false is 0. The precision in eval is

As a simple example, suppose we want M to be 2**N+l. Then

define(N, 3)
define (M, 'eval (2**N+l) ')

As a matter of principle, it is advisable to quote the
defining text for a macro unless it is very simple indeed
(say just a number); it usually gives the result you want,
and is a good habit to get into.

1-7 Zilog 1-7

M4 Zilog M4

1.7. File Manipulation

You can include a new file in the input at any time by the
built-in function include:

include(filename)

inserts the contents of filename in place of the include
command. The contents of the file is often a set of defini
tions. The value of include (that is, its replacement text)
is the contents of the file; this can be captured in defini
tions, etc.

It is a fatal error if the file named in include cannot be
accessed. To get some control over this situation, the
alternate form sinclude can be used; sinclude ("silent
include") says nothing and continues if it can't access the
file.

It is also possible to divert the output of M4 to temporary
files during processing, and output the collected material
upon command. M4 maintains nine of these diversions, num
bered 1 through 9. If you say

divert(n)

all subsequent output is put onto the end of a temporary
file referred to as n. Diverting to this file is stopped by
another divert command; in particular, divert or divert(&)
resumes the normal output process.

Diverted text is normally output all at once at the end of
processing, with the diversions output in numeric order. It
is possible, however, to bring back diversions at any time,
that is, to append them to the current diversion.

undivert

brings back all diversions in numeric order, and undivert
with arguments brings back the selected diversions in the
order given. The act of undiverting discards the diverted
stuff, as does diverting into a diversion whose number is
not between 0 and 9 inclusive.

The value of undivert is not the diverted stuff. Further
more, the diverted materiar-is not rescanned for macros.

The built-in divnum returns the number of the currently
active diversion. This is zero during normal processing.

1-8 Zilog 1-8

M4 Zilog M4

1.8. System Command

You can run any program in the local operating system with
the syscmd built-in. For example,

syscmd(date)

on ZEUS runs the date command. Normally syscmd would be
used to create a file for a subsequent include.

To facilitate making unique file names, the built-in mak
etemp is provided, with specifications identical to the sys
tem function rnktemp: a string of XXXXX in the argument is
replaced by the process id of the current process.

1.9. Conditionals

There is a built-in called ifelse which enables you to per
form arbitrary conditional testing. In the simplest form,

ifelse(a, b, c, d)

compares the two st:rings a and b. If these are identical,
ifelse returns the string c; otherwise it returns d. Thus
we might define a macro called compare which compares two
strings and returns "yes" or "no" if they are the same or
different.

define(compare, 'ifelse($1, $2, yes, no)')

Note the quotes, which prevent too-early evaluation of
ifelse.

If the fourth argument is missing, it is treated as empty.

ifelse can actually have any number of arguments, and thus
provides a limited form of multi-way decision capability.
In the input

ifelse(a, b, c, a, e, f, g)

if the string a matches the string b, the result is c. Oth
erwise, if d is the same as e, the result is f. Otherwise
the result is g. If the final argument is omitted, the
result is null, so

ifelse(a, b, c)

is c if a matches b, and null otherwise.

1-9 Zilog 1-9

M4 Zilog M4

1.18. String Manipulation

The built-in len returns the length of the string that makes
up its argument. Thus

len(abcdef)

is 6, and len((a,b)) is 5.

The built-in substr can be used to produce substrings of
strings. substr(s, i, n) returns the substring of s that
starts at the ith position (origin zero), and is n charac
ters long. If n is omitted, the rest of the string is
returned, so

substr('now is the time', 1)

is

ow is the time

If i or n are out of range, various sensible things happen.

index(sl, s2) returns the index (position) in sl where the
string s2 occurs, or -1 if it doesn't occuru As with
substr, the origin for strings is 0.

The built-in translit performs character transliteration.

translit(s, f, t)

modifies s by replacing any character found in f by the
corresponding character of t. That is,

translit(s, aeiou, 12345)

replaces the vowels by the corresponding digits. If t is
shorter than f, characters which don't have an entry in t
are deleted; as a limiting case, if t is not present at all,
characters from f are deleted from s. So

translit(s, aeiou)

deletes vowels from s.

There is also a built-in called dnl which deletes all char
acters that follow it up to and including the next newline;
it is useful mainly for throwing away empty lines that oth
erwise tend to clutter up M4 output. For example, if you
say

1-10 Zilog 1-10

M4

define(N, 100)
define(M, 200)
define(L, 300)

Zilog M4

the newline at the end of each line is not par~ of the
definition, so it is copied into the output, where it may
not be wanted. If you add dnl to each of these lines·, the
newlines will disappear.

Another way to achieve this, due to J. E. Weythman, is

divert(-1)
define(•.•)

divert

1.11. Printing

The built-in errprint writes fts arguments out on the stan
dard error file. Thus you can say

errprint('fatal error')

dumpdef is a debugging aid which dumps the current defini
tions of defined terms. If ihere are no arguments, you get
everything; otherwise you get the ones you name as argu
ments. Don't forget to quote the names!

1.12. Summary of Built-ins

Each entry is preceded by the page number where it is
described.

l·-11 Zilog 1-11

M4 Zilog

3 changequote(L, R)
1 define(name, replacement)
4 divert(number)
4 divnum
5 dnl
5 d um pd e f ('name' , ' name' , ••.)
5 errprint(s, s, •••)
4 eval(numeric eKpression)

M4

3 ifdef('name', this if true, this if false)
5 ifelse(a, b, c, d)
4 i n c 1 ud e (f i 1 e)
3 i ncr (number)
5 index(sl, s2)
5 len(string)
4 maketemp(... xxxxx ...)
4 sinclude(file)
5 substr(string, position, number)
4 syscmd(s)
5 translit(str, from, to)
3 undefine('name')
4 undivert(number,number, •••)

1.13. Acknowledgements

We are indebted to Rick Becker, John Chambers,
and especially Jim Weythman, whose pioneering
led to several valuable improvements. We are
grateful to Weythman for several substantictl
to the code.

1.14. Ref:erences

Doug McI1roy,
use of M4 has

als:o deeply
contributions

[l] B. W. Kernighan and P. J. Plauger, Software Tools,
Addison-Wesley, Inc., 1976.

1-12 Zilog 1-12

ZEUS PROGRAMMING*

* This information is based on an article originally written by
Brian w. Kernighan, Bell Laboratories.

PGMG Zilog PGMG

ii Zilog ii

PGMG Zilog PGMG

Pref ace

This document introduces programming using ZEUS. The
emphasis is on how to write programs that interface with the
operating system, either directly or through the standard
I/O library. The topics discussed include:

<b Handling command arguments

i$ Standard I/O

i$ Standard I/O file access

$- Low-level I/O

$- Processes

<b Signals

The material discussed in this document is also covered in
the ZEUS Referen£~ Manual and in ZEUS for Beginners. All
programming is done in C; refer to The c Programming
Language by B. w. Kernighan and D. M. Ritchie {Prentice
Hall, 1978) for more information on c.

iii Zilog iii

PGMG Zilog PGMG

,

iv Zilog iv

PGMG Zilog

Table of Contents

SECTION 1 BASICS 0 •

1.1.
1. 2.

Program Argument~ •••••••••••••
The Standard Input and Output

.
SECTION 2 The Standard 1/0 Library

2. l.
2.2.
2.3.
2.4.
2.5.
2.6.
2.7.

Introducticm
File Access: .
Error Handling
Miscellaneous I/O Functions

.
General Usage .
Calls .
Macros

SECTION 3 LOW-LEVE!L 1/0 ••••••••••••••••••••• • ••••••••

3 .1. General • •
3.2. File Descriptors • •
3.3. Read and Write • • • • • • •
3.4. Open, Creat, Close, Unlink
3.5. Random Access With ls eek
3.6. Error Processing • • • • •

SECTION 4 PROCESSES .
4 .1. System Functio11
4.2. Low-Level Process Creation • •
4.3. Control of Processes
4.4. Pipes

SECTION 5 SIGNALS .

v

5. l.
5.2.
5.3.

General ••••••••••• . .
Signal Routin~ •••••
Interrupts •••••••••••••

Zilog

.

PGMG

1-1

1-1
1-1

2-1

2-1
2-1
2-4
2-5
2-5
2-6

2-16

3-1

3-1
3-1
3-2
3-4
3-6
3-7

4-1

4-1
4-1
4-2
4-4

5-1

5-1
5-1
5-2

v

PGMG

1.1. Program Arguments

Zilog

SECTION 1
BASICS

PGMG

When a C program is run as a command, the arguments on the
command line are available to the function main as an argu
ment count (argc) and an array (argv) of pointers to charac
ter strings that contain the arguments. By convention,
argv[!] is the command name itself, so a~ is always
greater than 0. The following program illustrates the
method used. It simply echoes its arguments back to the
terminal.

main(argc, argv)
int argc;
char *argv[];
{

int i;

/* echo arguments */

for (i = l; i < argc; i++)
printf("%s%c", argv[i], (i<argc-1)?

}

I I I \n I) i

The array argv is a pointer to an array whose individual
elements are pointers to arrays of characters. Each array
of characters is terminated by \0, so it can be treated as a
string. The program starts by printing argv[l] and loops
until it has printed all of the arrays.

The argument count and the arguments are parameters to main.
To save them so that other routines can use them, they must
be copied to external variables.

1.2. The Standard Input and Output

The simplest input mechanism is to read the standard input,
which is data from the user's terminal. The function
~etchar returns the next input character each time it is
called. Input from a file can be substituted for input from
the terminal by using the < convention as defined in ZEUS
for Beginners. If prog uses getchar, then the command line

prog < file

1-1 Zilog 1-1

PGMG Zilog PGMG

causes pro 1i to read file instead of the terminal; prog
itself is not affected by the origin of its input. This is
also true if the input comes from another program using a
pipe.

otherprog I prog

provides the standard input for prog from the standard out
put of otherprog.

The function getchar returns EOF when it encounters the end
of file or an error on what is-F.>eing read.

The function putchar(c) puts the character c on the standard
output. The output- can be captured on a-file by using >.
If prog uses putchar,

prog > outf ile

writes the standard output on outfile instead of on the ter
minal. If outfile does not exist, it is created. If it
already exists, its previous contents are overwritten. A
pipe can be used.

prog I otherprog

puts the standard output of prog into the standard input of
otherprog.

The function printf, which formats output in various ways,
uses the same mechanism as putchar. Therefore, calls to
printf and putchar can be intermixed in any order. The out
put appears in the order of the calls.

Similarly, the function scanf provides formatted input
conversion; it reads the standard input and breaks it into
strings, numbers, and so on, as desired. The function scanf
uses the same mechanism as getchar, so calls to either can
be intermixed.

Many programs read only one input and write only one output.
For such programs, I/O with getchar, putchar, scanf, and
printf can be adequate, and it is enough to get started.
This is particularly true if the ZEUS pipe facility is used
to connect the output of one program to the input of the

1-2 Zilog 1-2

PGMG Zilog PGMG

next. For example, the following program strips out all
ASCII control characters from its input (except for new line
and tab).

#include <stdio.h>
main() /* ccstrip: strip nongraphic characters */
{

}

int c;
while ((c = getchar()) != EOF)

i f ((c > = ' ' & & c < 01 7 7) I I c = = ' \ t ' I I c - - ' \ n ')
putchar(c);

exit(0);

The line

#include <stdio.h>

should appear at the beginning of each source file. It
causes the C compiler to read a file (/usr/include/stdio.h)
of standard routines and symbols that includes the definI
tion of EOF.

If it is necessary to treat multiple files, cat can be used
to collect the files:

cat fi lel f i le2 • • • I ccstrip > output

thereby avoiding the necessity of learning how to access
files from a program. The exit at the end of the program is
not necessary, but it ensures that any caller of the program
sees a normal termination status (conventionally 0) from the
program when it completes. (Section 6 discusses status
returns in more detail.)

1-3 Zilog 1-3

PGMG Zilog PGMG

SECTION 2
THE STANDARD I/O LIBRARY

2.1. Introduction

The standard I/O library is a collection of routines provid
ing efficient and portable I/O services for most C programs.
The standard I/O library is available on System 8000, which
supports c. Programs that confine their system interactions
to the library's facilities can be easily transported from
System 8000 to another system or from another system to Sys
tem 8000.

The standard I/O library was designed with the following
goals in mind.

1. Maximal time and space efficiency so that it can be
used in all applications no matter how critical.

2. Simple to use and free from unexplained numbers and
calls that interfere with the understandability and
portability of many programs using older packages.

3. The interface provided is applicable on all machines,
whether or not the programs that implement it are
directly portable to other systems.

In Sections 2.2 through 2.4, the basics of the standard I/O
library are discussed. Sections 2.5, 2.6, and 2.7 contain a
more complete description of its capabilities.

2.2. File Access

The programs described so far read the standard input and
write the standard output. Programs can also access a file
not already connected to the program. One example, we,
counts the number of lines, words, and characters in a set
of files. For instance, the command

WC X.C y.c

prints the number of lines, words, and characters in the
file ~·£ and the file y.c and then print~ the combined total
lines, words, and characters for these files.

It is necessary to connect the file system names to the I/O
statements that read the d.ata. Before a file is read or

2-1 Zilog 2-1

PGMG Zilog PGMG

written, it is opened by the standard library function
fopen, which takes an external name (like x.c or y.c),
interfaces with the operating system, and returns a-n inter
nal name that must be used in subsequent reads or writes of
the file.

This internal name is a pointer (called a file pointer) to a
structure that contains information about the file, such as
the location of a buffer, the current character position in
the buffer, and whether the file is being read or written.
Part of the standard I/O definitions obtained by including
stdio.h is a structure definition called FILE. The only
declaration needed for a file pointer is one such a:s:

FILE *fp, *fopen();

Here, fp is a pointer to a FILE, and fopen returns a pointer
to a FILE'. (FILE is a type name, like integer (in!_), not a
structure ·tag.-,--

The actual call to fopen in a program is:

fp = fopen(name, mode);

The first argument of fopen is the name of the file, as a
character string. The second argument is the mode, also as
a character string, which indicates how the file is to be
used. The only allowable modes are read ("r"), write ("w"),
and append ("a").

If a file opened for writing does not exist, it is created,
if possible. Opening an existing file for writing destroys
the old contents. Trying to read a file that does not exist
is an error. There can be other causes of error as well,
such as trying to read a file without having read permis
sion. If there is any error, fopen returns the null pointer
value NULL~ (defined as zero in stdio.h).

There are several ways to read or write the file once it is
open. The simplest are getc and putc. The function g;tc
returns the next character from a file--it needs the file
pointer to tell it what file to read. For example,

c = getc(fp)

places the next character from the file referred to by fp in
c. EOF is returned when end of file is reached. The inverse
of getc is putc.

putc(c, fp)

2-2 Zilog 2-2

PGMG Zilog PGMG

puts the character c on the file fp and ~eturns c. EOF is
returned on error.

When a program is started, three files--predefined in the
I/O library as the standard input (stdin), the standard out
put (stdout), and the standard error output (stderr) files-
are opened automatically, and file pointers are provided for
them. Normally, these file pointers are all connected to
the terminal, but they can be redirected to files or pipes
as described in Section 1.2. The files stdin, stdout, and
stderr can be used wherever an object or-Type FILE can be
used. However, they are constants, not variables-;-50 noth
ing can be assigned to them.

With some of the preliminaries out of the way, we can now be
written. The basic design of we is convenient for many pro
grams. If there are! command-1 ine arguments, they are pro
cessed in order. If there are no arguments, the standard
input is processed. Thus, the program can be used stand
alone or as part of a larger process.

2-3

#include <stdio.h>
main(argc, argv)
int argc;

/* we: count lines, words, chars */

char *argv[];
{

int c, i, inword;
FILE *fp, *fopen();
long linect, wordct, charct;
long tlinect = 0, twordct = 0, tcharct = 0;
i = 1;
fp = stdin;
do {

if (argc > 1 && (fp=fopen(argv[i], "r")) ==NULL) {
fprintf(stderr, "we: can't open %s\n", argv[i]);
continue;

}
linect = wordct = charct = inword = 0;
while ((c = getc(fp)) != EOF) {

}

cha1rct++;
if (c == '\n')

linect++;
if (c == ' ' I I c == ' ' I I c -- '\n')

inword = 0;
e 1 s: e i f (in word = = 0) {

inword = l;
wordct++;

}

printf("%7ld %7ld %7ld", linect, wordct, charct);

Zilog 2-3

PGMG

}

Zilog PGMG

printf(argc > 1 ? " %s0\n" "0\n", argv[i]);
fclose(fp);
tlinect += linect;
twordct += wordct;
tcharct += charct;

} while (++i < argc);
if (argc > 2)
printf ("%7ld %7ld %7ld total0\n", tlinect, twordct, tchar 1

eKit(0) i

The function fprintf is identical to printf, except that the
first argument in fprintf is a file pointer that specifies
the file to be written.

The function fclose is the inverse of fopen. It breaks the
connection between the file pointer and the external name
that is established by fopen, freeing the file pointer for
another file. Since there is a limit on the number of files
that a program can have open simultaneously, files should be
freed when they are no longer needed. The function fclose
also flushes the buffer in which putc is collecting output
(fclose is called automatically for each open file when a
program terminates normally).

2.3. Error Handling

The file stderr is assigned to a program in the same way as
stdin and stdout. Output written on stderr appears on the
terminal, even if the standard output is redirected. The
command wc writes its diagnostics on stderr instead of
stdout, so-that if one of the files cannot be accessed, the
message goes to the terminal instead of disappearing down a
pipeline or into an output file.

The program signals errors by using the function exit to
terminate program execution. The argument of exit is avail
able to the process that called it (see Section-5}, so the
success or failure of the program can be tested by another
program that uses it as a subprocess. By convention, a
return value of 0 signals thBt all is well; nonzero values
signal abnormal situations.

The exit command calls fclose for each open output file to
flustl()ut any buffered output. It then calls the routine
exit, which causes immediate termination without any buffer

flushing. The exit routine can be called directly if
desired.

2-4 Zilog 2-4

PGMG Zilog PGMG

2.4. Miscellaneous I/O Functiqns

The standard I/O library provides several other I/O func
tions besides those illustrated above.

Normally, output with putc, getc, etc., is buffered (except
to std er r) • To f o r c: e i t out i mm e d i ate 1 y , use ff 1 u sh (f p) •

The function fscanf is identical to scanf, except that its
first argument is a file pointer that specifies the file
from which the input comes. It returns EOF at end of file.

The functions sscan~ and sprintf are identical to fscanf and
fprintf, except that the fir~t argument names a character
string instead of a file pointer. The conversion is done
from the string for sscanf and to the string for ~printf.

The function fgets(!>uf, size, ;ep) copies the next line from
fp (up to and including a new line) into buf. At most,
size-1 characters are copied. NULL is returnea-at end of
file.- The function fputs(buf ,fp) writes the string in buf
onto file fE· ~-

The function ungetc(£ 1 fp) "pushes back" the character c onto
the input stream f.E.· A subsequent call to getc, fscanf,
etc., encounters c. Only one character of pushback per file
is permitted.

2u5. General Usage

Each program using the library must have the line

#include <stdiouh>

to define certain macros and variables. These routines are
in the normal C library. All names in the include file
intended only for internal use begin with an underscore ()
to reduce the possibility of confusion by these files having
the same name as user named files. The following names are
to be visible outside the package.

std in Standard input file.

stdout Standard output file.

stderr Standard error file.

2-5 Zilog 2-5

PGMG Zilog PGMG

EOF Defined to be -1, the value returned by the read
routines on end-of-file or error.

NULL

FILE

Notation for the null pointer returned by
pointer-valued functions to indicate an error.

Expands to struct iob; useful shorthand when
declaring pointers to streams.

BUFSIZ size number suitable for an I/O buffer (see setbuf
in Section 2.6).

getc, getchar, putc, putchar, feof, ferror, fileno
Macros, whose actions are described below. They
are mentioned here to point out that it is not
possible to redeclare them and that they are not
actually functions. Therefore, they cannot have
breakpoints set on them.

The routines discussed here offer automatic buffer alloca
tion and output flushing where appropriate. The names
stdin, stdout, and stderr are constants and nothing can be
ass1gned"t."~hem.

2.6. Calls

FILE *fope~(filename, type) char *filename, *~;

This call opens the file and, if needed, allocates a
buffer for it. The character string filename specifies
the name. The argument~ is a character string, not
a single character. It can be "r", "w", or "a" to
indicate read, write, or append. The-value returned is
a file pointer. If it is NULL, the attempt to open
failed.

FILE *freopen(filename, type, ioptr) char *filename., *type;
FILE *iopt.E_;

2-6

The stream named by ioptr is closed, if necessary, and
then reopened as if by fopen. If the attempt to open
fails, NULL is returned; otherwise, ioptr is returned
(iopt.E_ now refers to the new file)-:- The reopened
stream is often stdin or stdout.

This call returns the next character from the stream
named by ioptr, a pointer to a file (similar to one
returned by fopen), or the name stdin. The integer EOF

Zilog 2-6

PGMG Zilog PGMG

is returned on end-of-eile or when an error occurs.
The null character \0 is a legal character.

int fgetc(ioptr) FILE *ioptr;

This call acts like getc, but it is a. genuine function,
not a macro, so it can be pointed to or passed as an
argument.

putc(£, ioptr) charc; FILE *ioptr;

The putc call writes the character c on the output
stream--named by ioptr, which is a value returned from
fopen, stdout, or stderr. The character c is passed as
value; EOF is returned .on error.

fputc(c, ioptr) char~c; FILE *ioptr;

This call acts like putc, but it is a function, not a
macro.

fclose (ioptr) FILE "rioptr;

The file corresponding to ioptr is closed after any
buffers are emptied, and a buffer allocated by the I/O
system is freed. The fclose function is automatic on
normal termination of the program.

fflush(ioptr) FILE "rioptr;

Any buffered information on the output.stream named by
ioptr is written out. Output fil,s are normally buf
fered only if they are not ~irected to the terminal.
However, stderr always starts unbuftered and remains
so, unless setbuf is used or unless it is reopened.

exit(errcode);

This call terminates the process and returns its argu
ment as status to the parent. This is a special ver
sion of the routine that calls fflu$h for each output
file. The call exit terminates without flushing.

feof (ioptr) FILE *ioptr;

This call returns nonzero when EOF has occurred on the
specified input stream.

ferror(ioptr) FILE *ioptr;

2-7 Zilog 2-7

PGMG Zilog PGMG

This call returns nonzero when an error has occurred
while the named stream is being read or written. The
error indication lasts until the file has been closed.

getchar();

This call is identical to getc(stdin).

putchar(£) charc;

This call is identical to putc (c, stdout).

This call reads into the character pointer s, up to
n-1 characters from the stream ioptr. The-iead ter
minates with a new line character, which is placed in
the buffer followed by a null character. The function
fgets returns the first argument or NULL if error or
EOF occurred.

fputs(~, ioptr) char *~; FILE *ioptr;

This call writes the null-terminated string (character
array) s on the stream ioptr. A new line is not
appended~ and no value is returned.

ungetc (c, .ioptr) charc; FILE *ioptr;

The argument character c is pushed back on the input
stream named by iopt~. Only one character at a time
can be pushed back.

printf(format, al, •••) char *format;
fprintf.(1optr, !ormat, al, •••) FILE *ioptr; char *.format;
sprintf(~, format, al, •••)char*~, *format;

The function printf writes on the standard output. The
function fprintf writes on the named output stream, and
sprintf puts characters in the character array named by
s. Tne specifications are as described in E!.!_ntf (l) of
the ZEUS Reference Manual.

scanf(format, al, •••) char *format;
fscanf(1optr, fOrmat, al, •••) FILE *ioptr; char *format;
sscanf(s, .format,~, •••) char*~, *format;

2-8

The scanf function reads from the standard input;
fscan.freads from the named input stream; sscanf reads
from the character string supplied as s;---and scanf
reads characters, interprets them according to a

Zilog 2-8

PGMG Zilog PGMG

format, and stores the re~ults in its arguments. Each
routine expects, as arguments, a control string format
and a set of arguments, each of which must be a pointer
that indicates where the converted input is to be
stored.

The function scanf returns the number of successfully
matched and ~lSSTgned input items as its value. This
can be used to decide how many input items were found.
EOF is returned on end of file. Note that this is dif
ferent from 0, which means that the next input charac
ter does not match what was called for in the control
string.

fread(ptr, sizeof(*ptr), nitems, ioptr) char*ptr;
intnitems; FILE *iof>tr;

This call reads nitems of data from file ioptr, begin
ning at ptr. Advance notification of binary I/O is not
required-.--When, for portability reasons, binary I/O
becomes required, an additional character is added to
the mode-string on the fopen call.

fwrite(ptr, sizeof(-A~ptr), nitems, ioptr) char*ptr;
terns; FILE *ioptr; ---

intni-

This call is similar to fread, except that it writes
nitems of data from file ioptr, beginning at P~..!.·

rewind(ioptr) FILE *ioptr;

This call rewinds the stream named by ioptr. It is not
very useful except for input, since a rewound output
file is open only for output.

system(string) char *string;

The string is executed by the shell as if it were typed
at the terminal.

~tw(ioptr) FILE *ioptr;

This call returns the next word from the input stream
named by iopt:E_. EOF is returned on end of file or
error, but since this is a good integer, feof and fer
ror should be used. (System 8000 uses 16-bit words-.-)-

putw(~, ioptr) intw; FILE *ioptr;

2-9

This call writes the integer w on the named output
stream.

Zilog 2-9

PGMG Zilog PGMG

The function setbuf can be used after a stream has been
opened, but before I/O has started. If buf is NULL,
the stream is unbuffered. Otherwise, the buffer sup
plied, which must be a character array of sufficient
size, is used:

char buf[BUFSIZ];

fileno(ioptr) FILE_ *ioptr;

This call returns the integer file descriptor associ
ated with the file.

fseek(ioptr, offset, ptrname) FILE *ioptr; long offset;
intptrnameT

The location of the next byte in the stream named by
ioptr is adjusted. The argument offset is a long
integer. If ptrname is 0, the offset is measured from
the beginning of the file. If ptrname is 1, the offset
is measured from the current read or write pointer. If
~name is 2, the offset is measured from the end of
tne fITe. This routine accounts for any buffering.
When this routine is used on non-ZEUS systems, the
offset must be a value returned from ftell and the
ptrname must be 0.

long ftell.(ioptr) FILE *ioptr;

The byte offset (measured from the beginning of the
file) associated with the named stream is returned.
Any buffering is accounted for. On non-ZEUS systems,
the value of this call is useful only for handing to
fseek, to position the file to the same place it was
when 1tell was called.

getpw(uid, buf) intuid; char *buf;

2-10

The password file is searched for
user ID. If an appropriate line is
into the character array buf, and 0
line is found corresponding to
returned.

Zilog

the given integer
found, it is copied
is returned. If no
the user ID, 1 is

2-10

PGMG Zilog PGMG

char *malloc (num) ; ~~ ntn um;

This call allocates num bytes. Because the pointer
returned is sufficiently well aligned, it can be used
for any purpose. NULL is returned if no space is
available.

char *calloc(num, size); intnum, size;

This call allocates space for num items, each of size
size. The space is guarantee<rto be set to 0 and the
pointer is sufficiently w~ll aligned to be usable for
any purpose. NULL is returned if no space is avail
able.

cfree (ptr) char *ptr:;

Space is returned to the operating system used by cal
loc. If the pointer was not obtained from calloc, this
will not function properly.

2.7. Macros

The definitions of the following macros can be obtained by
including <ctype.h>~

isalpha(c)

Returns nonzero if the argument is alphabetic.

is upper(£)

Returns nonzero if the argument is upper-case alpha
betic.

islower(£)

Returns nonzero if the argument is lower-case alpha
betic.

isdigit(£)

Returns nonzero if the argument is a digit.

isspace(£)

2-11

Returns nonzero if the argument is a spacing character.
(tab, new line, carriage return, vertical tab, form
feed, or space).

Zilog 2-11

PGMG Zilog PGMG

ispunct(c)

Returns nonzero if the argument is any punctuation
character (not a space, letter, digit, or control char
acter).

isalnum(£_)

Returns nonzero if the argument is alphanumeric.

Returns nonzero if the argument is printable (a letter,
digit, or punctuation character).

iscntrl(£)

Returns nonzero if the argument is a control character.

isascii(£)

Returns nonzero if the argument is an ASCII character.

toupper(c)

Returns the upper-case character corresponding to the
lower-case letter c.

tolower(£_)

2-12

Returns the lower-case character corresponding to the
upper-case letter c.

Zilog 2-12

PGMG

3 .. 1. General

Zilog

SECTION 3
LOW-LEV£L 1/0

PGMG

The bottom level of I/O on ZEUS is described in this sec
tion, and it does not provide buffering or any other ser
vices. It is a direct entry into the operating system. The
calls and usage are simple and the user has control over
what happens.

3.2. File Descriptors

In the ZEUS operating system, all input and output is done
by reading or writing files, because all peripheral devices
(including the user's terminal) are files in the file sys
tem. This means that a single, homogeneous interface han
dles all communication between a program and the peripheral
devices.

Before reading or writing a file, the file must be opened.
If a file to be written on does not exist, it is created.
The system checks to see if the user has permission to write
on a file and if the file exists. If everything is in order,
the system returns a small, positive integer called a file
descriptor. Whenever I/O occurs, the file descriptor iden
tifies the file. All informat~on about an open file is
maintained by the system; the user program refers to the
file only by the file descriptor.

The file pointers discussed in Section 3 are similar to file
descriptors, except that file descriptors are more fundamen
tal. A file pointer points to a structure that contains,
among other things, the file descriptor for the file in
question.

Since input and output involving the user's terminal are so
common, special arrangements exist to make this convenient.
When the command interpreter (the shell) runs a program, it
opens three files (with file descriptors 0, 1, and 2) called
the standard input, the standard output, and the standard
error output. All of these are normally connected to the
terminal, so if a program reads file descriptor 0 and writes
file descriptors 1 and 2, it can perform terminal I/O
without opening the files.

3-1 Zilog 3-1

PGMG Zilog PGMG

If I/O is redirected to and from files with < and >, as in

prog < infile > outfile

the shell changes the default assignments for file descrip
tors 0 and 1 from the terminal to the named files. If the
input or output is associated with a pipe, the results are
similar. Normally, file descriptor 2 remains attached to
the terminal. Therefore, error messages can go to the ter
minal. To redirect the standard error output, type an
ampersand (&) after the >. For example:

prog >& errsmgs

In all cases, the file assignments are changed by the shell,
not by the program. The program does not need to know where
its input comes from or where its output goes, as long as it
uses file 0 for input, and files 1 and 2 for output.

3.3. Read and Write

All input and output is done by the functions read and
write. For both read and write operations, the fi'rst argu
ment is a file descriptor. The second argument is a buffer
in the program where the data is to come from or go to. The
third argument is the number of bytes to be transferred.
The calls are:

n read= read(fd, buf, n);
n-written = write(fd, buf, n);

Each call returns a byte count of the number of bytes actu
ally transferred. When reading, the number of bytes
returned can be less than the number asked for, if fewer
than n bytes remain to be read. (When the file is a termi
nal, r~ad normally reads only up to the next new line, which
is generally less than what was requested.) A return value
of zero bytes implies EOF and -1 indicates an error of some
sort. For writing, the returned value is the number of
bytes actually written; an error is returned if this number
is not equal to the number of bytes requested.

The number of bytes to be read or written is arbitrary. The
two most common values are 1, which means one unbuffered

3-2 Zilog 3-2

PGMG Zilog PGMG

character at a time, and 512, which corresponds to a physi
cal block size on some peripheral devices.

A simple program to copy the program's input to its output
can now be written. This program copies anything to any
thing, since the input and output can be redirected to any
file or device.

#define BUFSIZE 512 /* best size for ZEUS */
main() /* copy input to output */
{

}

char buf[BUFSIZE];
int n;
while ((n = read (std in, buf, BUFSIZE)) > 0)

write(stdout, buf, n);
exit(0) ,;

If the file size is not a multiple of BUFSIZE, a read
returns a smaller number of bytes to be written by write.
The next call to read returns zero.

It is instructive to see how read and write can be used to
construct higher-l1evel routi~es 1 ike getchar and putchar.
For example, the followng is a version of ~char that does
unbuffered input.

#define CMASK
getchar ()
{

char c;

0377 /* for making char's > 0 */
/* unbuffered single character input */

return((read(0, &c, 1) > 0) ? c & CMASK : EOF);
}

The variable c must be declared char, because read accepts a
character pointer. The character being returned must be
masked with 0377 (octal) to ensure that it is positive; oth
erwise, sign extension can make it negative.

The second version of getchar inputs in big chunks and out
puts the characters one at a time.

3-3 Zilog 3-3

PGMG Zilog

#define CMASK 0377 /* for making char's > 0 */
#define BUFSIZE 512
getchar() /* buffered version */
{

}

static char buf[BUFSIZE];
static char *bufp = buf;
static int n = 0;
if (n == 0) { /* buffer is empty */

n = read(0, buf, BUFSIZE);
bufp = buf;

}
return((--n >= 0) ? *bufp++ & CMASK

3.4. Open, Creat, Close, Unlink

EOF);

PGMG

Files must be explicitly opened to be read or written
(unless they are the default standard input, output, and
error files). The two system entry points for explicitly
opening files are open and £_reat.

The entry point open is similar to fopen (discussed in Sec
tion 3.2) except that instead of returning a file pointer,
o~ returns a file descriptor, which is an integer.

int fd;
fd = open(name, rwmode);

As with fopen, the name argument is a character string
corresponding to the external file name. The access mode
argument is different, however. The rwmode argument is 0
for read, 1 for write, and 2 for read and write access. If
any error occurs, open returns -1; otherwise, it returns a
valid file descriptor.

Trying to open a file that does
error. The entry point creat
files or to rewrite old ones-.--

fd = creat(name, pmode);

not exist results in an
is provided to create new

returns a file descriptor if it was able to create the file
called name, and -1 if not. If the file already exists,
creat truncates it to zero length. It is not an error to
creat a file that already exists.

3-4 Zilog 3-4

PGMG Zilog PGMG

If the file is new, creat crea~es it with the protection
mode specified by the pmode argument. In the ZEUS file sys
tem, there are nine bits of protection information associ
ated with a file, controlling read, write, and execute per
mission for the owner of the file, for the owner's group,
and for all others. A three-digit octal number is most con
venient for specifying the permissions. For example, 0755
(octal) specifies read, write, and execute permission for
the owner, and read and execute permission for the group and
everyone else.

To illustrate, here is a simplified version of the ZEUS
utility cp, a program that copies one file to another.
(This version copies only one file and does not permit the
second argument to be a directory.)

#define NULL 0
#define BUFSIZE 512
#define PMODE 0644 /* RW for owner, R for group, others */
main(argc, argv) /* cp: copy fl to f2 */
int argc;
char *argv[];
{

}

int fl, f2, n;
char buf[BUFSIZE];
if (argc != 3) ·

error("Usage: cp from to", NULL);
if ((fl= open(argv[l], 0)) == -1)

error("cp: can't open %s", argv[l]);
i f ((f 2 = c re a t (a r g v [2] , PM ODE)) = = -1)

error("cp: can't create %s", argv[2]);
while ((n = read (f 1, buf, BUFSIZE)) > 0)

if (write(f2, buf, n) I= n)
error("cp: write error", NULL);

exit(0);

error(sl, s2) /*print error message and die */
char *sl, *s2;
{

}

printf(sl, s2);
print f (' \n') ;
exit(l);

As stated earlier, there is a limit to the number of files
(typically 15-25) that a program can have open simultane
ously. Accordingly, any program that processes many files
must be prepared to reuse file descriptors. The routine

3-5 Zilog 3-5

PGMG Zilog PGMG

close breaks the connection between a file descriptor and an
open- file, freeing the file descriptor for use with some
other file. Termination of a program via exit, or return
from the main program, closes all open fileS:--

The function unlink(filename) removes the file filename from
the file system.

3.5. Random Access With lseek

File I/O is normally sequential: each read or write is per
formed after the previous one. When necessary, however, a
file can be read or written in an arbitrary order. The sys
tem call lseek provides a way to move around in a file
without reading or writing.

lseek(fd, offset, origin);

forces the current position in the file, whose descriptor is
fd, to move to position offset, which is taken relative to
the location specified by origin. Subsequent reading or
writing begins at that position. The argument offset is a
long integ•~r; fd and origin are integers. The argu1nent ori
gin can be 0, 1, or 2 to specify that offset is to be meas
ured from the beginning, from the current position, or from
the end of the file. For example, to append to a file and
seek to the end before writing, type:

lseek(fd, 0L, 2);

To get back to the beginning (rewind), type:

lseek(fd, 0L, 0);

The 0L argument can also be written as (long) !·

With lseek, it is possible to treat files like large arrays,
at the price of slower access. For example, the following
simple function reads any number of bytes from an arbitrary
place in a file.

3-6 Zilog 3-6

PGMG Zilog PGMG

get(fd, pos, buf, n) /* read n bytes from position pos */
int fd, n;
long pos;
char *buf;
{

lseek(fd, pos, 0); /*get to pos */
return(read(fd, buf, n));

}

3.6. Error Processing

All routines that are direct entries into the system can
incur errors. Usually an error is indicated by the return
of a value. To enable the user to learn what sort of error
occurred, all these routines leave an error number in the
external cell errno. The meanings of th~ various error
numbers are liste~ in Section 2 of the ZEUS Reference ---Manual. If the reason for failure is to be printed out, the
routine perror must be used; this prints a message associ
ated with the value of errn~. The routine sys errno is an
array of character strings that can be indexed by errno and
printed by the user's program.

3-7 Zilog 3-7

PGMG

4.1. System Function

Zilog

SECTION 4
PROCESSES

PGMG

This section describes how to execute a program from within
another program.

The easiest way to execute a program from another program is
to use the standard library routine system, which takes one
argument, a command string exactly as typed at the terminal
(except for the new line at the end), and executes it. For
instance, to time-stamp the output of a program:

main()
{

}

system("date");
/* rest of processing */

If the command string has to be built from pieces, the in
memory formatting capabilities of sprintf can be useful.

Remember that getc and putc normally buffer
terminal I/O is not properly synchronized
buffering is avoided. For output, use fflush;
see setbuf in Section 3.6.

4.2. Low-Level Process Creation

their input;
unless this

for input,

If the standard I/O library is not used, or if finer control
is needed, calls to other programs must be contructed using
the routines on which the standard library's ~stem routine
is based. ·

The most basic operation is execution of another program
without returning, using the routine execl. To print the
date as the last action of a running program, use

execl("/bin/date", "date", NULL);

The first argument to execl is the file name of the command,
whose address in the file system must be known. The second
argument is conventionally the program name, but it is sel
dom used except as a place holder. If the command takes
arguments, they are strung out after the program name. The
end of the list is marked by a NULL argument.

4-1 Zilog 4-1

PGMG Zilog PGMG

The execl call overlays the existing program with the new
one ;-it runs the new program and then exits. ThE~re is no
return to the original program.

It is more common, however, for a program to fall into two
or more phases that communicate only through temporary
files. If this happens, it is natural to make the second
pass simply an execl call from the first.

The one exception to the rule that the original program
never gets control back occurs when there is an error (for
example, if the file can't be found or is not executable).
If the location of date is not known, enter

execl(~/bin/date", "date", NULL);
execl("/usr/bin/date", "date", NULL);
fprintf(stderr, "Someone stole 'date'\n");

Use execv, a variant of execl, when the number of arguments
is not known in advance. The call is

execv(filename, argp);

where ~g.E. is an array of pointers to the arguments. The
last pointer in the array must be NULL so that execv can
tell where the list ends. As with execl, filename is the
file in which the program is found, and ~[-~) is the name
of the pro9 ram. (This arrangement is identical to the argv
array for program arguments.)

Because neither of these routines provides automatic search
of multiple directories, the location of the command must be
precisely known. The expansion of metacharacters like <, >,
*, ?, and [] in the argument list cannot be obtained. If
these metacharacters are desired, use execl to invoke the
shell (sh), which then does all the.work. A string command
line that contains the complete command as it would have
been typed at the terminal is constructed. Then enter:

execl("/bin/sh", "sh", "-c", commandline, NULL);

The shell is assumed to be at a fixed place, /bin/sh. Its
argument -c means that the next argument should be-treated
as a whole command line. The only problem is in construct
ing the right information in commandline.

4.3. Control of Processes

The following explains how to regain control after running a
program with execl or execv. Since these routines simply

4-2 Zilog 4-2

PGMG Zilog PGMG

overlay the new program on the old one, to save the old one
requires that it first be split into two copies; one of
these copies can be overlaid, while the other waits for the
new, overlaying program to finish. The splitting is done by
a routine called fork.

proc id= fork();

splits the program into two copies, both of which continue
to run. The only difference between the two is the value of
the process ID (proc id) • In one of these processes (the
child), proc id~-iS-Zero. In the other (the parent),
Oproc id is nonzero--it is the process number of the child.
Thus, the basic way to call and return from another program
is

i f (fork () == 0)
execl("/bin/sh", "sh", "-c", cmd, NULL); /*in child*/

In fact, except for handling errors, this is sufficient.
The fork makes two copies of the program. In the child, the
value returned by fork is zero. It calls execl, which does
the command and -then di es. In the parent-; fork returns
nonzero, so it skips the execl. (If there is any error,
fork returns -1).

More often, the parent waits for the child to terminate
before it continues. This is done with the function wait:

int status;
if (fork() == 0)

execl(•••);
wait(&status);

This still does not handle any abnormal conditions, such as
a failure of execl or fork, or the possibility that there
might be more than-one child running simultaneously. (The
wait returns the process ID of the terminated child, which
can be checked against the value returned by fork.) Also,
this fragment does not deal with any abnormal behavior on
the part of the child (which is reported in status). How
ever, these three lines are the heart of the standard
library's system routine.

The status returned by wait encodes in its eight low-order
bits the child's termination. status. A 0 indicates normal
termination, and a nonzero indicates various kinds of prob
lems. The next higher eight. bi ts are taken from the argu
ment of the call to exit, which causes a normal termination
of the child process. It is good coding practice for all
programs to return meaningful status.

4-3 Zil:og 4-3

PGMG Zilog PGMG

When a program is called by the shell, the three file
descriptors (0, 1, and 2) point to the correct files; all
other possible file descriptors are available for use. When
this program calls another program, make certain the same
conditions hold. Neither fork nor the exec calls affect
open files. If the parent is buffering output that must be
output before the output from the child, the parent must
flush its buffers before the execl. Conversely, if a caller
buffers an input stream, the called program loses any infor
mation that has been read by the caller.

4.4. Pipe:s

A pipe is an I/O channel used between two processes. One
process writes into the pipe, while the other reads. The
system buffers the data and synchronizes the two processes.
Most pipes are created by the shell, as in:

ls I pr

which connects the standard output of ls to the standard
input of E.!.· Sometimes, however, it is more convenient for
a process to set up its own commands.

The system call ~ creates a pipe. Since a pipe is used
for both reading and writing, two file descriptors are
returned. The actual usage is like the following:

int fd[2];
stat= pipe(fd);
if (stat == -1)

/*there was an error ••• *I

The fd is an array of two file descriptors, where fd[0] is
the read side of the pipe and fd [l] is the wr·i te-side.
These can be used in read, write, ancr-c1ose calls, just like
any other file descriptors.

If a process attempts to read a pipe that is empty, it waits
until data arrives. If a process attempts to write into a
pipe that is full, it waits until the pipe empties. If the
write side of the pipe is closed, a subsequent read
encounters EOF.

The following example illustrates the use of pipes. A func
tion called popen(cmd, mode) creates a process cmd and
returns a file descriptor that either reads or writes the
process, according to mode. That is, the call

fout = popen("pr", WRITE);

4-4 Zilog 4-4

PGMG Zilog PGMG

creates a process that executes the EE. command. Subsequent
write calls using the file descriptor fout send data to that
process through the pipe.

The function popen first creates the pipe with a pipe system
call, then forks to create two copies of itself .~e child
determines whether to read or write. It closes the other
side of the pipe, then calls the shell (via execl) to run
the desired process. The parent, likewise, closes the end
of the pipe it does not use. These closes are necessary to
make end-of-file tests execute properly. For example, if a
child that intends to read fails to close the write end of
the pipe, it will never see the end of the pipe file because
there is one potentially active writer.

#include <stdio.h>
#define READ 0
#define WRITE 1
#define tst(a, b) (mode --
static int popen_pid;
popen(cmd, mode)
char *cmd;
int mode;
{

int p[2];
if (pipe(p) < 0)

return(NULL);

READ

if ((popen pid = fork()) == 0) {
close(tst(p[WRITE], p[READ]));
close(tst(0, l));
dup(tst(p[READ], p[WRITE]));
close(tst(p[READ], p[WRITE]));

? (b)

execl("/bin/sh", "sh", "-c", cmd, 0);

}

}
_exit(l); /*disaster has occurred

if (popen pid == -1)
return(NULL);

close(tst(p[READ], p[WRITE]));
return(tst(p[WRITE], p[READ]));

(a))

if we get here */

The sequence of closes in the child is as follows. The task
is to create a child process that reads data from the
parent. The first close closes the write side of the pipe,
leaving the read si~de open. The lines

close(tst(0, 1));
dup(tst(p[READ], p[WRITE]));

are the conventional way to associate the pipe descriptor
with the standard input of the child. The close closes file

4-5 Zilog 4-5

PGMG Zilog PGMG

descriptor 0, the standard input. The system call ~up
returns a duplicate of an already open file descriptor.
File descriptors are assigned in increasing order, and the
first available one is returned, so the effect of the ~ is
to copy the file descriptor for the pipe (read side) to file
descriptor 0. Thus, the read side of the pipe becomes the
standard input. Finally, the old read side of the pipe is
closed. A similar sequence of operations takes place when
the child process is supposed to write from the parent
instead of read.

The function pclose closes the pipe created by ~~· The
main reason for using a function other than close is to wait
for the termination of the child process. .The-return value
from pclose indicates whether or not the process succeeded.
Equally important, when a process creates several children,
is that only a certain number of unwaited-for children can
exist, even if some of them have terminated. Performing the
wait removes the child from the unwaited-for status. For
example,

#include <signal.h>
pclose(fd) /* close pipe fd */
int fd;
{

}

register r, (*hstat) (), (*istat) (), (*qstat) ();
int status;
extern int popen pid;·
close(fd); -
istat = signal(SIGINT, SIG IGN);
qstat = signal(SIGQUIT, SIG IGN);
hstat = signal(SIGHUP, SIG IGN);
while ((r = wait(&status))-!= popen pid && r != -1);
if (r == -1) -

status = -1;
signal(SIGINT, istat);
signal(SIGQUIT, qstat);
signal(SIGHUP, hstat);
return(status);

The calls to signal ensure that no interrupts occured during
the wait process.

The routine as written is limited in that only one pipe can
be open at one time because of the single shared variable
popen pid. A popen function, with slightly different argu
ments and return values, is available as part of the stan
dard I/O library discussed in Section 3. As currently writ
ten, it shares the same limitation.

4-6 Zilog 4-6

PGMG

5 .. 1. General

Zilog

SECTIQN 5
SIGNALS

PGMG

This section discusses external signals and program faults.
Since nothing useful can be done within C about program
faults that arise from illegal memory references or from
execution of peculiclr instructions, the following discussion
concerns only external signals:

&- .!_nterrupt: sent when the DEL character is typed

$ quit: generatE~d by control backslash

$ hangup: caused by hanging up the phone

~ terminate: generated by the kill command

When one of these events occur$, the signal is sent to all
processes that were started from the corresponding terminal.
Unless other arrangements have been made, the signal ter
minates the process. In quit, a core image file is written
for debugging purposes. --

5.2. Signal Routine

The routine signal alters the default action. It has two
arguments. The first specifies the signal, and the second
specifies how to treat it. The first argument is a number
code. The second, the address, is either a function or a
code that requests that the signal either be ignored or be
given the default action. The include file signal.h gives
names for the various arguments and must be included when
signal is used. For example,

#include <signal.h>

signal(SIGINT, SIG_IGN);

causes interrupts to be ignored, while

signal(SIGINT, SIG_DFL);

restores the default action of process termination. In all
cases, signal returns the previous value of the signal. The
second argument to ~~ignal can be the name of a function

5·-1 Zilog 5-1

PGMG Zilog PGMG

(which has to be declared explicitly if it has not been com
piled). In this case, the named routine is called when the
signal occurs. This facility is generally used by the pro
gram to clean up unfinished business before it terminates.
For example, to delete a temporary file:

#include <signal.h>
main()
{

}
onintr()
{

}

int onintr();
if (signal (SIGINT, SIG IGN) != SIG IGN)

signal(SIGINT,-onintr);
/* Process ••• */
exit(0);

unlink(tempfile);
exit(l);

5.3. Interrupts

Signals like INTERRUPT are sent to all processes started
from a particular terminal. When a program is to be run
noninteractively (started by&), the shell pervents it from
receiving interrupts. If the program begins by announcing
that all interrupts are to be sent to the onintr routine,
this command cancels the shell's effort to protect it when
the program is run in the background.

The solution to this is to test the state of interrupt han
dling and continue to ignore interrupts if they are already
being ignored. The program code depends on the fact that
signal returns the previous state of a particular signal.
If signals are already being ignored, the process continues
to ignore them; otherwise, they are caught.

A more sophisticated program can intercept an interrupt and
interpret the interrupt as a request for the program to stop
executing and return to its own command-processing loop. In
a text editor, interrupting a long printout should not cause
the editor to terminate and lose the work already done. The
outline of the code for this can be written as follows:

5-2

#include <signal.h>
#include <setret.h>
ret buf sjbuf;
main()

Zilog 5-2

PGMG

{

}

onintr ()
{

}

Zilog PGMG

int (*istat) (), onintr ();
istat = signal(SIGINT, SIG IGN);

/* save original status */
setret(sjbuf); /*save current stack position*/
if (istat != SIG IGN)

signal(SIGINT, onintr);
/* main processing loop */

printf("0nterrupt0);
longret(sjbuf); /*return to saved state*/

The include file setret.h declares the type ret buf to be an
object in which th•~ state can be saved. The sjbuf type, an
array, is such an object. The setret routine saves the
state. When an :interrupt occurs, acall is forced to the
onintr routine, which can print a message and set flags.
The lonS!_e! routine takes as an argument an object stored by
setret and restores control to the location after the call
to setret. Thus, control is returned to the position in the
main routine where the signal is set up and where the main
loop entered. Notice that the signal gets set again after
an interrupt occurs. This is necessary because most signals
are automatically reset to their default action when they
occur. Functions containing calls to setret() should not
have any register variable declarations.

Some programs that need to detect signals cannot be stopped
at an arbitrary point. If the routine calls on the
occurrence of a signal, sets a flag, and then returns
instead of calling exit or longret, execution continues at
the exact point it was interrupted. The interrupt flag can
be tested later.

One difficulty associated with the above approach arises if
the program is reading data from the terminal when the
interrupt is sent. The specified routine is called, and it
sets its flag and returns. If execution resumes at the
exact point it was interrupted, the program continues read
ing data from the terminal until another line is entered.
This response could be confusing, since it might not be
obvious that the program is reading. It is better to have
the signal take effect instantly. To resolve this diffi
culty, terminate the terminal read when execution resumes,
this returns an error code indicating what happened.

5-3 Zilog 5-3

PGMG Zilog PGMG

Programs that catch and resume execution after signals
should be designed to handle errors that are caused by
interrupted system calls such as reads from a terminal,
wait, and pause. A program whose onintr program 1::mly sets
intflag, resets the interrupt signal, and returns, should
include code such as the following, when it reads the stan
dard input:

if (getchar() == EOF)
if (intflag)

/* EOF caused by interrupt */
else

/* true end-of-file */

When signal-catching is combined with execution of other
programs, the code should look something like the following:

if (fork () == 0)
exec 1 (•••) ;

signal(SIGINT, SIG IGN); /*ignore interrupts*/
wait(&status); /*-until the child is done*/
signal(SIGINT, onintr); /*restore intsrrupts */

If the program called catches its own interrupts, when the
subprogram is interrupted, it gets the signal and returns to
its main loop, and probably reads data from the terminal.
But the calling program also pops out of its wait for the
subprogram and reads the terminal. The system does not have
a protocol for determining which program gets each line of
input. A simple solution is to have the parent program
ignore interrupts until the child is done. This reasoning
is reflect,ed in the standard I/O library function s~tem:

5-4

#include <signal.h>
system(s) /* run command string s */
char *s;
{

int status, pid, w;
register int (*istat) (), (*qstat) ();
if ((pid = fork()) == 0) {

}

execl("/bin/sh", "sh", "-c", s, 0);
_exit(l27);

istat = signal(SIGINT, SIG IGN);
qstat = signal(SIGQUIT, SIG IGN);
while ((w = wait(&status)) T= pid && w I= -1)

;
if (W == -1)

status = -1;
signal(SIGINT, istat);
signal(SIGQUIT, qstat);

Zilog 5-4

PGMG Zilog PGMG

return(status);
}

5-5 Zilog 5-5

ZEUS PLZ/ASM ASSMEBLER

USER GUIDE

PLZ/ASM Zilog PLZ/ASM

ii Zilog ii

PLZ/ASM Zilog PLZ/ASM

Pref ace

This manual describes how to use the Z8000 PLZ/ASM language
translator (as) for the ZEUS Operating System. The Z8000
PLZ/ASM language is described in the Z8000 PLZ/ASM Assembly
Language Programming Manual (03-3055). Implementation
dependent features are described in this document.

The S8000 version of PLZ/ASM depends on certain features of
ZEUS. It uses the stream Input/Output (I/O) package to han
dle files, but otherwise is self-contained and system
independent. A description of its exact invocation is con
tained in the ZEUS Reference Manual (as(l).

Refer to a.out(S) of the ZEUS Reference Manual, and to Sec
tion 7 of this manual, fora description of the object code
format.

iii Zilog iii

PLZ/ASM Zilog PLZ/ASM

iv Zilog iv

PLZ/ASM Zilog PLZ/ASM

Table of Contents

SEC'fION 1 INTRODUCTION .
1.1.
1. 2.
1. 3.
1. 4.
1. 5.
1. 6.
l. 7.

General Description •••••••••••••••••••••••••••
Re 1 o c a t a b i 1 i t y • • • • • • • ,. •
Assembler Abort Conditions ••••••••••••••••••
User Input ••••••••••••••••••••••••••••••••••••
Assembler Output ••••••••••••••••••••••••••••••
Command Line ••••••••••••••••••••••••••••••••••
Options • • • • • • • • • • • , •••••••••••••••••••••

SECTION 2 LISTING .FORMAT .
2.1.
2.2.

Format Description
Sample Listing

.
SECTION 3 MINIMAL PROGRAM REQUIREMENTS

SECTION 4 IMPLEMEN1rATION FEATURES AND LIMITATIONS

SECTION 5 OBJECT CIDDE .

SECTION 6 PLZ/ASM :ERROR MESSAGES .

v Zilog

1-1

1-1
1-1
1-1
1-1
1-2
1-2
1-2

2-1

2-1
2-2

3-1

4-1

5-1

6-1

v

PLZ/ASM Zilog

SECTION 1
INTRODUCTION

1.1. General Description

PLZ/ASM

The ZS 000 PLZ/ASM a1ssembl er (invoked by the command as) is
the relocating assembler for tEUS. It accepts a source file
(a symbolic representation of a program in Z8000 assembly
language) and translates it into an object module. It can
also produce a listing file containing the source and assem
bled code.

1.2. Relocatability

Relocation refers to the ability to bind a program module
and its data to a particular memory area after the assembly
process. The output of the assembler is an object module
that contains enough information to allow a loader or linker
to assign a memory area to that module. Refer to the
description of the ZEUS linker/loader in ld(l) of the ZEUS
Reference Manual. ~ -

1.3. Assembler Abort Conditions

There are two assembler abort conditions.

1. If I/O errors are returned during a system call, an
error is printed out and the assembly is aborted.

2. If error conditions cause the assembler to become com
pletely lost, the assembly is aborted and an Assemb?er
Abort error (error 255) i.s printed out to the standard
error and the listing file.

1.4. User Input

An editor is used to create a Z8000 PLZ/ASM source program.
The source file should end with the file name extension .s
(upper or lowercase). Instructions for invoking the assem
bler are defined in Section 1.6.

1-1 Zilog 1-1

PLZ/ASM Zilog PLZ/ASM

1.5. Assembler Output

The assembler creates two files: a listing file, with the
default name of the source file and the extension .1 in
place of .s, and an object file, with a.out or t.out as the
default name (Section 5). In creating the object file, the
assembler uses a temporary, intermediate file that is
deleted when the assembly is complete. The listing file
contains the source statements and corresponding line
numbers; any error message numbers are listed following the
line on which the error occurred. Refer to Section 6 for
explanations of error messages.

1.6. Command Line

The assembler is invoked by the following command line:

as filename [options]

The extension .s, which specifies that filename contains the
source for a single Z8000 PLZ/ASM module, must be appended
to filename ..

1.7. Options

The following options are valid and can appear in any order,
separated by delimiters such as a blank or tab.

-d string

-f

-i

-1

-o filename

1-2

In combination with the -1 option, specifies
a date (up to 19 characters) to be put in the
listing header.

Allows assembly of floating point Extended
Processor Unit (EPU) instructions.

Requests the intermediate file the assembler
uses be saved. The file name for the inter
mediate file is the input file name with the
.i extension.

Requests a listing file. The file name for
the listing file is the input file name with
the .1 extension. No listing is produced if
this option is not used.

Allows the user to name the output file. If
this option is not used, the default file
name is a.out or t.out (Section 5).

Zilog 1-2

PLZ/ASM

-p

-r

-u

-v

-z

1-3

Zilog PLZ/ASM

Prints the list~ng file to the user console
as it is being produced. Only source lines
containing errors are printed to the console
if this option is not specified.

Requests the relocation information file be
saved. The relocation file name is the input
file name with the .r extension.

All undefined symbols are treated as exter
nal.

Turns on the console message (name and ver
sion number, passl message, and assembly com
plet,e).

Causes the assembler to produce type z object
format rather than a.out. Also causes the
default file name to be t.out rather than
a.out (Section 5).

Turns on the pass! trace facility.

Zilog 1-3

PLZ/ASM Zilog

SECTiON 2
LISTING FORMAT

PLZ/ASM

2.1. Format Description

The assembler produces a listing of the source program,
along with generated object code. The various fields in the
listing format are described in this section. Refer also to
the sample listing in Section 2.2.

HEADING

LOC

OBJ CODE

STMT

SOURCE

2-1

The first page heading contains the assembler
version number and column headings as
explained below. In addition, the heading
can contain a user-specified string that is
usually the date of the assembly (see Date
option, Section 1.6).

The location column contains the value of the
reference counter for statements. The
counter starts at zero for each different
section.

The object code column contains the value of
generated object code. It is blank if a
statement does not generate object code.

Each byte or word of object code is followed
by either a single quote ('),an asterisk
(*),or a blank line. A single quote indi
cates that the value is relocatable. An
asterisk indicates that the value is depen
dent on an external symbol. A blank indi
cates that the value will not change. A
value that is either relocatable or dependent
on an external is likely to be modified by
either the linker or loader. The value in
the listing can be different from the value
during program execution. Three dots (•••)
indicate that the preceding byte, word, or
long word is repeated (only in data initiali
zation) •

The statement number column contains the
sequence number of each source line.

The remainder of the line contains the source
text.

Zilog 2-1

PLZ/ASM

2. 2. SamplE~ Listing

Z8000ASM 3."

Zilog

LOC OBJ CODE STMT SOURCE STATEMENT

declaration !

declarations !

0000
switch

0000
declaration

able part

l bubble sort MODULE

2
3 CONSTANT

4 FALSE .- 0
5 TRUE := 1
6
7 EXTERNAL
8 list ARRAY (10 WORD]
9

10 INTERNAL
11 switch BYTE

12
13 sort PROCEDURE

14 ENTRY

15 DO

0000 4C05 0000' 16
switch !

LOB switch,#FALSE

0004 0000
0006 8Dl8
pointer i

0008 0B01
000A E701
000C E811
000E All2
pointer j

17

18
19
20

21

0010 A921 22
for words) !
0012 6114 0000* 23
0016 6126 0000* 24
001A 8864 25
list[j] ••• 1
001C E307 26
to bubble •••

CLR Rl

DO
CP Rl,R0
IF UGE THEN EXIT FI

LO R2,Rl

INC R2,i2

LO R4,list(Rl)
LD R6,list(R2)
CP R4,R6

IF UGT THEN

PLZ/ASM

Module

Constant

Loop control

Procedure

Begin execut-

Loop til EXIT

Initialize

Clear array

Done ?

Initialize

j = i+l {dble

! If list[i] >

••• exchange

001E 4C05 0000' 27
top !

LOB switch,iTRUE ! ••• largest to

0022 0101
0024 6Fl6 0000* 28
0028 6F24 0000* 29

30
002C A911 31

2-2

LO list{Rl),R6
LD list(R2),R4

FI
INC Rl, :ff: 2

Zilog

Advance word

2-2

PLZ/ASM Zilog

pointer !
002E ESEC 32 OD
loop
0030 4C01 0000' 33
0034 0000

CPB switch,#FALSE

IF EQ THEN RET FI 0036 EE01 34
0038 9E08
003A E8E2 35 OD
loop
003C
cedure

declaration
003C
procedure !

003C 2100 0012
loop control

word array 1
0040 0021
procedure
0042 9E08
0044
procedure

36 END sort

37
38 GLOBAL

39 main PROCEDURE

40 ENTRY
41 LO R0,#9*2

42

43 CALR sort

44 RET
45 END main

46
47 END bubble sort

0 errors Assembly complete-

2-3 Zilog

PLZ/ASM

End nested DO

Test switch !

End outer DO

End of pro-

New procedure

Program entry

Initialize

Double for

Call sort

End of main

2-3

PLZ/ASM Zilog PLZ/ASM

SECTION 3
MINIMAL PROGRAM REQUIREMENTS

The examples in this section illustrate the minimal amount
of PLZ/ASM structuring required to make a working program.
The first example shows the absolute minimal structuring
required: a module definition, a declaration class, and a
procedure definition. The second example shows the same
program, but includes examples of how to use symbolic con
stants and data declarations.

EXAMPLE #1:

anyname MODULE

GLOBAL or INTERNAL depending on whether 1
intermodule linking is desired. !

somename PROCEDURE
ENTRY

! The program goes here !
RET

END somename
END anyname

EXAMPLE #2:

3-1

anyname MODULE

CONSTANT 1 Symbolic constants are declared here. 1

one := 1
hex ten : = %H'

GLOBAL or INTERNAL depending on whether !
intermodule linkage is desired. !

Zilog 3-1

PLZ/ASM Zilog

a BYTE 1 Data declarations can go here.
b WORD
buffer ARRAY [100 BYTE]

PLZ/ASM

GLOBAL !Restate the declaration class [optional].

3-2

somename PROCEDURE
ENTRY

! The program goes here!
RET

END somename

END anyname

Zilog 3-2

PLZ/ASM Zi log PLZ/ASM

SECTION 4
IMPLEMENTATION FEATURES AND LIMITATIONS

The Z8000 PLZ/ASM assembler limitations and implementation
features follow.

1. The Z8000 PLZ/ASM assembler uses the standard ASCII
character set. Upper or lowercase characters are
recognized and treated as different characters; key
words are recognized only if they are either all upper
or all lowercase (GLOBAL or global, but not Global).
Hexadecimal numbers and special string characters can
be either upper or lowercase (%Ab, '1st line%R2nd
line%r').

2. Source lines longer than 132 characters are accepted,
but only 132 characters are printed for error messages.
Comments and quoted strings can extend over an arbi
trary number of lines. Caution should be exercised to
avoid unmatched comment delimiters (!) or string delim
iters(').

3. Strings cannot be zero length ('')o

4. Constants are represented internally as 32-bit unsigned
quantities. Each operand in a constant expression is
evaluated as though it we're declared to be of type
LONG. For example, 4/2 equals 2, but 4/-2 equals zero
since -2 is represented as a very large unsigned
number. There is no overflow checking during evalua
tion of a constant expression. Because constants are
represented as 32-bit values, only the first four char
acters in a character sequence used as a constant are
meaningful ('ABCD' = 'ABCDE'). An exception is a
string used for array initialization, which can have a
length of up to 127 characters.

5. Identifiers can be of any length up to a maximum of 127
characters.

6. After an error occurs within CONSTANT, TYPE, or vari
able declarations, the assembler skips ahead until it
finds the next keyword th~t starts a new statement (an
opcode, IF, DO, EXIT, REPEAT, or END). This skipping
ahead may necessitate several assemblies before all
errors are detected and removed.

4-1 Zilog 4-1

PLZ/ASM Zilog PLZ/ASM

SECTION 5
OBJECT CODE

Depending on command line options, the assembler produces
object files in one of two formats: object code compatible
with that produced by the MCZ Z8000 PLZ/ASM assembler
(t.out) and ZEUS object code (a.out). Refer to Section 1.6
for the appropriate command-line options.

When producing ZEUS object code, a.out is the
name. This object code format is fully
~.out(~) of the ZEUS Reference Manual.

default file
described in

When producing MCZ object code, t.out is the default file
name. Below is a list of the object tags, their functions,
and the corresponding fields that make up this object code
format. The tags are classified into three groups: control
tags that are used to transfer control information, entry
tags that define the code, and modifier tags that act as
modifiers for the entry tags.

The following is a list of symbols used in the object code
syntax:

The vertical bar separates two mutually exclusive
items. The user enters one or the other, but not both.
Multiple vertical bars separate three or more mutually
exclusive items. Parameters separated by a vertical
bar can be delimited by brackets (see below).

* An asterisk placed after an item indicates that the
item appears zero or more times in the syntax.

+ A plus sign placed after an item indicates that the
item appears at least once in the syntax.

[] Brackets enclose an optional parameter--a parameter
that can appear zero or more times.

() Parentheses enclose parameter pairs, or group items so
that a repetition symbol (+ or *) can be applied to the
group.

I I

5-1

Single quotes enclose character strings that must be
entered with a particular parameter. However, the sin
gle quotes only delimit the required character string
and must not appear in the command line.

Zilog 5-1

PLZ/ASM Zilog PLZ/ASM

OBJECT CODE SYNTAX

The object code format is still under development and is
subject to change.

object_module

tagged_entry

control_entry

modified entry

modified addr

modified value

addr_entry

value_entry

name
length

5-2

=> [tagged_entry]*

=> control entry I modified entry

=> NOP
=> SEGMODULE bcount size size name
=> NONSEGMODULE bcount size name
=> ENDMODULE
=> SECTION bcount attr size name
=> GLOB bcount secw loc attr typew name
=> ABSGLOB bcount secw loc attr typew name
=> EXTERN bcount typew name
=> ENTRYPT sec loc
=> ABSENTRYPT sec loc
=> DEBUGSYMBOL bcount secw loc [bval]*
=> DEBUGINFO bcount [bval]*
=> MESSAGE bcount [bval]*
=> SETDATA sec
=> SETPROG sec
=> BEGSEC sec
=> LOCNT loc
=> ABSLOCNI loc
=> MODULEDEF secw loc wval size
=> MODULEREF wval

=> [REP bcount]
(modified_addr I modified_vc:1lue)

=> [SHORT] [SEGMENT I OFFSET]
[HIBYTE I LOBYTE]
[DISP offset] addr entry

=> [(REL sec) I RELPROG I RELDATA]
[SEQUENCE bcount] value entry

=> EXREF ext
=> SECREF sec
=> SECADDR sec offset
=> ZREF ext

=> LDBYTE bval
=> LDWORD wval
=> LDLONG lval

=> [byte]*
=> byte

Zilog 5-2

PLZ/ASM

size =>
attr =>
sec =>
secw =>
l()C =>
typel =>
type2 =>
bval =>
wval =>
lval =>
count ·=>
ext =>
offset =>

CONTROL TAGS:

HEX
00
01
02
03
04
05
06

07
08
09
0A
0B
0C
0D
0E
0F
10
11
12
13

NOP
SEGMODULE
NONSEGMODULE
ENDMODULE
SECTION
GLOB
ABSGLOB

EXTERN
ENTRY PT
ABSENTRYPT
DEBUGSYMBOI..
DEBUG INFO
MESSAGE
SETDATA
SETPROG
BEG SEC
LOCNT
ABSLOCNT
MODULEDEF
MODULEREF

ENTRY TAGS:

HEX
20
21
22
23
24

5-3

LDBYTE
LDWORD
LDLONG
EXREF
SECREF

Zllog PLZ/ASM

word
byte
byte
word
word
byte
byte
byte
word
long'
word
word
word

OBJECT CODE TAGS

Null operation
Segmented module definition
Nonsegmented module definition
End module
Section definition
Global symbol definition
Global symbol definition with

absolute offset
External symbol definition
Entry point with relocatable offset
Entry point with absolute offset
Debug symbol
Debug information
Variable length message
Set current data section
Set current program section
Begin section
Relocatable program counter
Absolute program counter
Module definition for z-code
Module reference used for z-code

machines

Load byte value
Load word value
Load long value
External reference
Section reference

Zi log· 5-3

PLZ/ASM

25 SECADDR
26 2:REF

MODIFIER 'I'AGS:

HEX
40 HEP
41 SEQUENCE
42 HEL
43 HELDATA

44 HELP ROG

45 [)ISP
46 *LOBYTE
47 *HI BYTE
48 **SHORT
49 **OFFSET
4A **SEGMENT

* ZS/Z-UPC
** Z8000

5-4

Zilog

Section address
z-code module reference

Repeat
Sequence
Relocatable

PLZ/ASM

Relocatable with respect to current
data area

Relocatable with respect to current
program area

Displacement
Low order byte of
High order byte of
Short segment address
Offset of
Segment of

Zilog 5-4

PLZ/ASM Zilog

SECTlON 6
PLZ/ASM ERROR MESSAGES

ERROR EXPLANATION

WARNINGS

1 Missing delimiter between tokens
2 Array of zero elements
3 No fields in record declaration
4 Mismatched procedure names
5 Mismatched module names
8 Absolute address warning for System 8000

TOKEN ERRORS

10 Decimal number too large
11 Invalid operator
12 Invalid special character after %
13 Invalid hexadecimal digit
14 Character sequence of zero length
15 Invalid character
16 Hexadecimal number too large

DO LOOP ERRORS

20 Unmatched OD
21 OD expected
22 Invalid repeat statement
23 Invalid exit statement
24 Invalid FROM label

IF STATEMENT ERRORS

30 Unmatched FI
31 FI expected
32 THEN or CASE expected
33 Invalid selector record

SYMBOLS EXPECTED

40) expected
41 (expected
42] expected

6-1 Zilog

PLZ/ASM

6-1

PLZ/ASM Zilog PLZ/ASM

43 [expected
44 := expected

ERROR EXPLANATION

UNDEFINED NAMES

50 Undefined identifier
51 Undefined procedure name

DECLARATION ERRORS

60 Type identifier expected
61 Invalid module declaration
62 Invalid declaration class
63 Invalid use of array [*] declaration
64 Uninitialized array [*] declaration
65 Invalid dimension size
66 Invalid array component type
67 Invalid record field declaration

PROCEDURE DECLARATION ERRORS

70 Invalid procedure declaration
71 ENTRY expected
72 Procedure name expected after END

INITIALIZATION ERRORS

80 Invalid initial value
81 Too many initialization elements for declared

variables
82 Invalid initialization
83 Array [*] given single noncharacter_sequence

initializer
84 Attempt to initialize an uninitialized data

area

SPECIAL ERRORS

90 Invalid statement
91 Invalid instruction
92 Invalid operand
93 Operand too large
94 Relative address out of range
95 : expected
97 Duplicate record field name

6-2 Zilog 6-2

PLZ/ASM Zilog

98 Duplicate CASE constant
99 Multiple declaration of identifier

ERROR EXPLANATION

INVALID VARIABLES

100 Invalid variable
101 Invalid operand for # or SIZEOF
102 Invalid field name
103 Subscripting of nonarray variable
104 Invalid use of period (.)

EXPRESSION ERRORS

110 Invalid arithmetic expression
111 Invalid conditional expression
112 Invalid constant expression
113 Invalid select expression
114 Invalid index expression
115 Invalid expression in assignment

CONSTANT OUT OF BOUNDS

120 Constant too large for 8 bits
121 Constant too large for 16 bits
122 Constant array index out of bounds

TYPE INCOMPATIBILITY

140 Character sequence initializer used
with array [*] declaration where
component's base type is not 8 bits

141 TYPE incompatibility with initilization

SEGMENTATION ERRORS

170 Invalid operator in nonse~mented mode
171 Mismatched short address operator
172 Mismatched segment designator

DIRECTIVE ERRORS

180 Inconsistent area specifier
181 Invalid area specifier
182 Mismatched conditional assembly directives

6-3 Zilog

PLZ/ASM

6-3

PLZ/ASM Zilog PLZ/ASM

183 Invalid conditional assembly expression
184 Attempt to mix segmented and nonsegmented code
185 Directive must appear alone on a single line
186 Invalid $CODE or $DATA directive

ERROR EXPLANATION

FILE ERRORS

198 EOF expected
199 UneKpected EOF encountered in source--possible

unmatched I or ' in source

IMPLEMENTATION RESTRICTIONS

224 Too many symbols--hash table full
226 Short segmented offset out of range
227 Object symbol table overflow
228 Relocation out of range (word overflow)
229 Unimplemented feature
230 Character sequence of identifier too long
231 Too many symbols--symbol table full
234 Too many initialization values
235 Stack overflow
236 Operand too complicated

6-4

NOTE

Errors larger than 24e can occur. If there are no
other errors in the program preceding one of these
errors, this indicates an assembler bug that
should be reported to Zilog along with any per
tinent information concerning its occurence.

Zilog 6-4

ZEUS PLZ/SYS USER GUIDE

PLZ/SYS Zilog PLZ/SYS

ii Zilog ii

PLZ/SYS Zilog PLZ/SYS

Pref ace

This document describes how PtZ/SYS source programs are run
under ZEUS on the S8000. Details about invoking the com
piler and code generator, and information about execution
requirements and conventions are included.

PLZ/SYS source programs running under ZEUS are discussed in
Section 2.

The operation of the PLZ/SYS compiler is described in Sec
tion 3. Use of the code generator is discussed in Section
4.

The implementation convention$ used in the representation
and execution of PLZ/SYS programs on the S8000 are described
in Section 5. Pro9rammers writing PLZ/ASM modules that are
linked with PLZ/SYS modules will find the necessary informa
tion in this section.

Examples of a PLZ/SYS module and an equivalent PLZ/ASM
module are given in Section 6.

The compiler and code generator error number explanations
appear in Appendice!s A and B.

For a description of the language PLZ/SYS, refer to Report
on the Programming Language ~/SYS by Snook, Bass, Roberts,
Nahapetian, and Fay (Springer-Verlag, 1978) and to Introduc
~ to Microprocessor Pro2ramming Using PLZ by Conway,
Gries, Fay, and Bass (Winthrop, Cambridge, Massachusetts,
1979) .

Other documents describing PLZ program preparation for S8000
include:

~ Z8000 PLZ/ASM Assembly Language Programming Manual,
Zilog part nurr~er 03-3055

iii

ZEUS Reference Manual, Zilog part number
(plz(!), plzsys(!), plzcg(!), and uimage(!))

Zilog

03-3255

iii

PLZ/SYS Zilog PLZ/SYS

The implementation of PLZ/SYS on the 88000 incorporates
several extensions to the original language. These exten
sions are documented in Addendum to the Report on the Pro
gramming Language PLZ/SYS (Zilog part number 03-3136):"

iv Zilog iv

PLZ/SYS Zilog PLZ/SYS

Table of Contents

SECTION 1 INTRODUCTION

SECTION 2 PLZ/SYS RUNNING UNDER ZEUS

2 .1.
2.2.
2.3.

Overview .
Limitations •••••••••••••••••••••••••••••••••••
Run-Time Conventions ••••••••••••••••••••••••••

SECTION 3 PLZ/SYS COMPILER•••••••••••••••••••••••••••

3 • 1 • Ov e r v i e w •
3.2. Plzsys Command Line •••••••••••••••••••••••••••
3.3. PLZ/SYS Version 3.1
Features and Limitations •••••••••••••••••••••••••••

3.3.1. Character Conventions ••••••••••••••••••••
3.3.2. Character Sequence and Identifier Length
3.3.3. Source Line Length •••••••••••••••••••••••
3.3.4. Procedure, Data, and
Program Size Limitations ••••••••••••••••••••••••
3.3.5. Error Recovery •••••••••••••••••••••••••••
3.3.6. Compiler Evaluation of
Constant Expressions ••••••••••••••••••••••••
3.3.7. Literal Constants or
Compile-Time Constant Expressions •••••••••••••••
3.3.8. Constant Type Determination ••••••••••••••
3.3.9. Structured Return Parameters •••••••••••••

SECTION 4 CODE GENERATOR .
4 .1.
4.2.

Overview • o ••••••••••••••••••••••••••••••••••••

Plzcg Command Line ••••••••••••••••••••••••••••

SECTION 5 PLZ/SYS IMPLEMENTATION
CONVENTIONS FOR THE zaeee

v

5 • 1 • Ov e r v i e w • .. •
5.2. Data Representation •••••••••••••••••••••••••••

5.2.1. Primitive Data Type Representation •••••••
5.2.2. Structured Data Type Representation ••••••

Zilog

1-1

2-1

2-1
2-1
2-1

3-1

3-1
3-1

3-2
3-2
3-3
3-3

3-3
3-3

3-4

3-4
3-5
3-6

4-1

4-1
4-1

5-1

5-1
5-1
5-1
5-3

v

PLZ/SYS Zilog PLZ/SYS

5. 3. Oat.a Alignment•.......•.....•.........
5. 4. Data Access Methods•....
5.5. Run-Time Storage Administration

5.5.1. Nonsegmented Code•...............
5.5.2. Segmented Code•.•.

5.6. Register Conventions•...
5.6.1. Nonsegmented Code•.•...........••
5 • 6. 2. Segmented Code

5.7. Execution Preparation•..............•..•.
5.7.1. Nonsegmented Code•...............
5.7.2. Segmented Code•...........•.

5-3
5-5
5-6
5-6
5-8

5-10
5-10
5-11
5-11
5-11
5-11

SECTION 6 PLZ/SYS - PLZ/ASM INTERFACE EXAMPLE 6-1

6.1. Pur·pose .. 6-1
6.2. Nonsegmented Code•. 6-3
6. 3. Sec:;rmented Code . • • . . • • . • . • • . • • • • • .. . • • . . . • • . 6-6

APPENDIX A PLZ/SYS ERROR MESSAGES A-1

APPENDIX B PLZCG ERROR NUMBERS AND EXPLANATIONS B-1

vi Zilog vi

PLZ/SYS

Figure
1-1

5-1

5-2

6-1

6-2

6-3

6-4

6-5

6-6

vii

Zilog PLZ/SYS

List of Illustrations

Linking of PLZ/SYS and
PLZ/ASM Source Code ••••••••••••••••••••••••• 1-2

Nonsegmented Run-Time
Stack--General Layout •• , .••••••••••••••••••• 5-7
Segmented Run-Time
Stacks--General Layout •••••••••••••••••••••• 5-9

Example 2: PLZ/ASM Module
for the Nonsegmented 88000 •••••••••••••••••• 6-1
Nonsegmented Run-Time Stack Detail
After Entry Sequence •••••••••••••••••••••••• 6-4
Nonsegmented Run-Time Stack Detail
Before Recursive Call ••••••••••••••••••••••• '5-5
Example 3: PLZ/ASM Module
for the Segmented $8000 ••••••••••••••••••••• 6-8
Segmented Run-Time Stack Detail
After Entry Sequence • '5-9
Segmented Run-Time Stack Detail
Before Recursive Call ••••••••••••••••••••••• 6-10

Zilog vii

PLZ/SYS Zilog PLZ/SYS

viii Zilog viii

PLZ/SYS

Table
3-1

ix

Zilog PLZ/SYS

List of Tables

Evaluation of Constant Expressions 3-5

Zilog ix

PLZ/SYS Zilog

SECTlON 1
INTRODUCTION

PLZ/SYS

The PLZ/SYS compiler (plzsys), code generator (plzcg), and
the package driver program (plz) are described in this docu
ment. When used in conjuntion with a ZEUS editor, PLZ/SYS
source files can be created and processed into a linked,
relocatable object module suitable for running under ZEUS or
loading into a standard Z8000. Programs can be prepared for
either the segmented or nonsegmented version of the Z8000
microprocessor.

A PLZ/SYS program is composed of separately compiled source
modules. A PLZ/SYS source module can contain control lines
of the form

#include "filename"

Such a control line causes the replacement of itself by the
entire contents of the file filename.

There are four stages in the process of a PLZ/SYS source
module. They are:

1. Replace all control lines in the source module.

2. Use plzsys to generate ari intermediate z-code module.

3. Use plzcg to generate a machine. code module in zobj
format.

4. Use uimage to translate the result of Step 3 into a.out
format.

After all the PLZ/SYS source modules in a program are pro
cessed, the ZEUS linker (ld) can be invoked to link all
these machine code modules with possibly other existing
machine code modules (libraries, assembler output, or C com
piler output) to produce an object module that can be run
under ZEUS (Figure 1-1).

The PLZ.IO I/O package is contained in the library
/lib/libp.a. Plz-callable versions of the ZEUS system calls
are also in /lib/libp.a.

In this document, all file extensions are written in lower
case. However, uppercase extensions .P and .z are also
acceptable by these programs.

1-1 Zilog 1-1

PLZ/SYS

1-2

r--:Z/SYS

L...:IURCE

CPP

PLZISYS
INTEFltMEDIATE

SCIURCE

PL.Z SYS

Pl~CG

MACHINE CODE
OBJECT MODULE

IN
:zobj FORMAT

.Jjr
UIMAGE

MACHINE CODE
OBJECT MODULE

IN
a.out FORMAT

l

PLZIASM
SOURCE

AS

Zilog

MACHINE CODE
OBJECT MODULE

IN
a.out FORMAT

LO

LINKED
OBJECT
MODULE

PLZ
LIBRARY

Figure 1-1 Linking of PLZ/SYS and
PLZ/ASM Source Code

Zilog

PLZ/SYS

c
LIBRARY J

00322

1-2

PLZ/SYS Zilog PLZ/SYS

SECT~ON 2
PI,Z/SYS RUNNING UNDER ZEUS

2. 1 • Overview

PLZ/SYS source programs intended to run under ZEUS can be
compiled, code generated, and linked using the simplified
user interface, pl2:(l). Plz is a driver for the compiler
and code generatc>r- which, along with the assembler, C
preprocessor, and ZEUS linker, are invoked automatically
with default command line options. Together they produce an
object module that is loaded and run by ZEUS.

The plz driver programs work similarly to cc(l) for C pro
grams. To compile a plz source program composed of several
modules, a single command must be issued to produce a ZEUS
loadable program. For example, a program consisting of
three PLZ/SYS modules, ~·£1 £•P1 ·c·E.1 and the PLZ/ASM
modules ~. ~ and e. ~~ is compiled by:

%plz a.p b.p c.p d.s e.s -o program

leaving the output on the file program. Default output is
a.out. Several options are accepted by plz and are
explained in the ZE:us Reference Manual under plz (_!) •

2.2. Limitations

'!'he plz programs created with the plz driver program are
limited because the~y cannot contain z-code modules. This is
because the ZEUS linker cannot create the appropriate tables
to link z-code. (See ld (_!) in the ZEUS Reference Manual.)

2.3. Run-Time Conventions

PLZ/SYS programs running under ZEUS must have an entry point
called main. The declaration for main is:

global

main procedure (argc integer, argv AAbyte)
returns (retcd integer)

where argc is the number of arguments supplied by ZEUS to
the program, and aI~ is a pointer to an array of pointers,
one for each argument. The return parameter retcd is zero

2-1 Zilog 2-1

PLZ/SYS Zilog PLZ/SYS

for normal termination. An error is indicated by a nonzero
return.

ZEUS system calls are supported and can be called from
PLZ/SYS programs. The library /lib/libp.a contains a ZEUS
implementation of the PLZ. IO I/O package and plz-·callable
versions of the system call library. There are some limita
tions, however. The variable number of argument forms of
exec { execl, exec le, etc.) are not supported. The €!Xi t sys
tem call is· renamed Exit to differentiate it from the plz
"exit" reserved word. The signal system call requires func
tion parame~ters that plz/sys does not allow. Theref:ore, the
signal system call cannot be called.

2-2

NOTE

Releasies of the PLZ/SYS compiler dated from Sep
tembe:1:· 38, 1981, will conform to the 88808 calling
conventions instead of those described in Sectlons
5 and 6. Programs compiled under these releeLses
will be able to declare ZEUS Utilities and C ftmc
tions as external procedures and invoke them
direct.ly. The library /lib/libp.a will no longer
be nec!essary.

Zilog 2-2

PLZ/SYS

3 • I • Overview

Zilog

SECTION 3
PLZ/SYS COMPILER

PLZ/SYS

The PLZ/SYS compile!r translates source code modules into
intermediate code. The ZEUS editor is used to create
PLZ/SYS source modules. The source file name must end with
the file name extension .p.

With the -1 option, the PLZ/SYS compiler creates a listing
file with the default source file name with the extension .1
rather than .p, and an object file with the default exten
sion .z. In crea.ting the object file, plzsys uses a tem
porary scratch file! that is deleted when compilation is fin
ished. The listing file contains the source code with line
numbers, statement numbers, and syntax error messages. The
messages consist of a pointer to each erroneous token, fol
lowed by an error number for each pointer. The list of
error numbers in Appendix A can be used to determine the
corresponding compilation error. Occasionally, the pointer
does not point directly at the incorrect token. Error mes
sages can be copied to a separate file with the error (-e)
option described in Section 3.2.

The object file contains z-code. The plzcg code generator
compiles z-code to Z8000 machine code.

3.2. Plzsys Conunan.d Line

In the following description, the word filename is used to
specify an arbitrary ZEUS path name.

The compiler is invoked by the following general shell com
mand line. Do not type the square brackets; they simply
indicate that options are not required.

plzsys [options] filename

where filename contains the source for a single plz module.
The extension .p is optional; if it is missing, the compiler
appends it before attempting to open the file. The options
listed below can appear in any order, separated by delim
iters.

3-1 Zilog 3-1

PLZ/SYS

Option

-1

-o

-e

-nd

-nc

-t Z80

-t Z8000s

-t Z8000ns

Zilog PLZ/SYS

Function

Creates a listing file with .1 substituted
for the .p extension of source file. Default
is no listing.

Assigns the name filename to the object file,
instead of the default source file name with
the extension .z. If no object. is desired,
use /dev/null for filename.

Copies error messages to the file whose name
is the same as the source file with extension
.e. If no errors occur, the error file is
deleted at the end of compilation.

Omits symbol, type, constant, and statement
number information for a hypothetical
debugger. The default is to generate debug
symbols.

Omits debug symbol information f:or any CON
STANT names. The default is to generate
named constants when generating debug sym
bols.

Generates output suitable for the ZBeJ. Does
not allow extensions to plzsys such as long
variables and structure comparie1on and
assignment. The output can run on MCZ only.

Generates output suitable for the s1egmented
Z8000. Treats pointers as four-byte objects,
instead of two-byte objects. Aligns word
size data on even addresses. Allows long
variables and structure comparision and
assignment.

Generates output suitable for the nonseg
mented Z8000. Allows long variables and
structure comparison and assignment. This is
the default.

3.3. PLZ/SYS Version 3.1 Features and Limitations

The following Z8000 PLZ/SYS features and limitations are
dependent cm site implementation.

3-2 Zilog 3-2

PLZ/SYS Zilog PLZ/SYS

3.3.1. Character Conventions; The PLZ/SYS compiler uses
the standard ASCII character set. Upper or lowercase charac
ters are recognized and treated as· different characters;
therefore, keywords are recognized only if they are either
all upper or all lowercase. For example, GLOBAL and global
are recognized as keywords, but Global is not. Hexadecimal
numbers and special string characters can be either upper or
lowercase.

3.3.2. Character Sequence and Ident~fier Length:
ter sequence cannot be less than one character or
255 characters. Identifiers can be any length less
characters; however, only the first 127 characters
the uniqueness of the name.

A charac
more than
than 256
determine

3. 3. 3. Source Line! Length: Source lines of more than 120
characters are accepted, but are truncated in the listing.
The entire listing line, including line numbers and state
ment numbers, can be up to 132 characters. Comments and
quoted character sequences can extend over an arbitrary
number of lines. Mismatched comment delimiters (1) or char
acter sequence delimiters(') must be avoided.

3.3.4. Procedure, Data, and 'Program Size Limitations: A
single procedure cannot be larger than 1000 bytes of inter
mediate code.

Data and program addressing within a module are limited to
16-bit quantities. Consequently, a module cannot contain
more than 65536 bytes of data or z-code.

3.3.5. Error Recovery: Error recovery by the compiler is
limited. If an error is discovered, symbols can be scanned
without being checked until the compiler can continue.
Within CONSTANT, TYPE, or variable declarations, the com
piler can skip ahead until it finds the next keyword (CON
STANT, TYPE, GLOBAL, EXTERNAL, or .INTERNAL) that starts a
declaration class. Within procedure declarations, the com
piler skips ahead until it finds the next keyword (IF, DO,
EXIT, REPEAT, RETURN, END, etc.) that starts a new state
ment. This skipping ahead can cause several compilations
before all errors are detected and removed.

3-3 Zilog 3-3

PLZ/SYS Zilog PLZ/SYS

3. 3. 6. Compiler · Evaluation of Constant
Expressions: Numeric constants are represented internally
as 16-bit quantities. Each operand in a constant expression
is evaluated as if it is declared to be of type WORD. Thus,
4/2 equals 2, but 4/-2 e~uals 0, since -2 is represented as
a very large positive number. The~e is no overflow checking
during evaluation of a constant expression. Since constants
are represented as 16-bit values, a maximum of two charac
ters are allowed in a character sequence used as a constant.
The order of bytes within a WORD quantity is
implementation-dependent when stored in memory. Programs
that depend on a certain order (high-order, then low-order
as in the PLZ/SYS implementation on the Z8000) cannot tran
sport easily to other machines or translators ..

3. 3. 7. L.iteral Constants or Compile-Time Constant
Expressions.: Error 240 occurs if a literal constant greater
than 65535 is used. Constant expressions that must be
evaluated at compile time (such as initial values or CASE
select elements) are restricted. Constant expressions are
evaluated using 16-bit operations on 16-bit quantities so no
error message is given.

When used with long (32-bit) types, a constant or constant
expression must be converted to 32 bits. This conve!rsion is
performed by the compiler as follows:

<t> If the~ constant or constant expression must be LONG,
then the 16-bit quantity is assumed to be WORD, and a
WORD-to-LONG conversion is performed. (The WORD is
right-justified iri a field of zero bits.)

If the constant or constant expression must be
LONG INTEGER, then the 16-bit quantity iH assumed to be
INTEGE:R, and an INTEGER-to-LONG INTEGER conversion is
performed. (The. INTEGER is 13ign-extended.)

When a cons:tant appears in a LONG executal,le expression
(assignment. or parameter), the constant is always treated as
a 32-bit qt.;tantity with the high 16 bits all zeros, and any
operations on the· constant are full 32-bit opE~rations. This
includes ne!gation (-) and operations with other ccmstants.
Unlike initial values and CASE-select elements, executable
expressions: are evaluated at run time by the target machine
(the Z8000), which accommodates long operations.

3-4 Zilog 3-4

PLZ/SYS Zilog PLZ/SYS

Run-time and compile-time long constant expressions have the
same value in many cases, such as when the type is
LONG INTEGER and the value is in the range -32768 to 32767
(using the 11

-
11 operator to represent negative constants), or

the type is LONG and the value is in the range 0 to 65535.

Table 3-1 gives examples of compile-time and run-time
evaluation of constant expressions. An executable expres
sion must be used to create a 32-bit value whose high-order
word is neither %FFFF nor 0.

Table 3-1. Evaluation of Constant Expressions

Compile-Time Run-Time
Constant Constant

Expression Value Expression Value

L LONG := -1 %0000FFFF L := -1· %FFFFFFFF
LI LONG INTEGER := -1 %FFFFFFFF LI := -1 %FFFFFFFF

L LONG := %FFFF %0000FFFF L := %FFFF %0000FFFF
LI LONG INTEGER %FFFFFFFF LI := %FFFF %0000FFFF

:= %FFFF

L LONG := -%FFFF %00000001 L := -%FFFF %FFFF0001
LI LONG INTEGER %00000001 LI := -%FFFF %FFFF0001

:= -%FFFF

L LONG := %0000BBBB L := %AAAABBBB
%AAAA*(%FFFF+l) %AAAA*(%FFFF+l)

+ %BBBB + %BBBB

(*) II II is a run-time unary operator in these cases.

3.3.8. Constant Type Determination: The compiler can usu
ally determine from context the type of constant load (long
or word) to generate. For example, in the assignment state
ment

x := 24

the compiler generates a word if X is a 16-bit quantity, and
a long word if X is a 32-bit quantity. Similarly, it deter
mines the type of constant in parameter lists, case expres
sions, and most relational expressions. The only instance
in which the compiler cannot determine from context what
type of constant to generate is in a relational expression
where the constant appears lexically before any variable
appears (0 <X).

3-5 Zilog 3-5

(*)
(*)

(*)
(*)

PLZ/SYS Zilog PLZ/SYS

To generate the correct constant, the compiler functions as
if long constants are required. When the compiler finally
determines what the type should be, it backs up and gen
erates the proper constants. There are two important conse
quences of this:

1. A maximum of 16 constants can be corrected. Error 236
occurs if more than 16 constants are encountered before
their type can be established.

2. If the proper type of the constant is WORD, then one or
more NOP (No-op) instructions (one byte each) appears
in the z-code. This lengthens the code and slows exe
cution slightly.

To avoid these problems, reverse the order of operands in
the relational expression~ use X>0 instead of 0<X.

3.3.9. Structured Return Parameters: The compiler does not
allow field selection of a record-return value or indexing
of an array-return value.

Thus, in the context of

EXTERNA.L
PROCA
PROCR

PROCEDURE RETURNS
PROCEDURE RETURNS

(ARRAY [10 BYTE])
(RECORD [Fl F2 BYTE])

the following expressions are not accepted by the compiler:

PROCA()[2]
PROCR().Fl

The only operations allowed on array- and record-return
parameters are assignment and comparison.

The compiler allows dereferencing of pointer-vaiued pro
cedures:

EXTERN.A.L PROCP PROCEDURE RETURNS (A BYTE)

PROCP()A

When the r€~turn value is a structure that will not be
copied, it can be replaced by a pointer-return value that
can be dereferenced and then indexed or field £elected:

3-6

TYPE
ATYPE ARRAY [S BYTE]

EXTERN.A.L

Zilog 3-6

PLZ/SYS

4.1. Overview

Zilog

SECTION 4
CODE GENERATOR

PLZ/SYS

PLZ/SYS compiler output is a z-code object module that can
not be executed directly on the 88000. The z-code must be
processed by the code generator to produce a machine-code
object module.

This section describes how to invoke the code generator and
select from the available options. The Z8000 plz code gen
erator accepts a file of intermediate z-code as input and
produces a file of Z8000 relocatable object code in Zobj
format as output. This output must be translated into a.out
format by uimage. The output of uimage is linked with other
a. out format modulE~s to form the complete executable load
module.

4.2. Plzcg Command Line

The code generator is invoked by the following ZEUS command
line:

plzcg [-o filename2] [-s] [-1] [-v] filename!

where filename! can have the extension .z. The extension .z
in the command line is optional; if missing, the code gen
erator appends it before attempting to open the file. In
the absence of the -o filenarne2 option, the generated object
file has the name t.out; otherwise, the object code is gen
erated in the file named filenarne2.

'I'he shared code (-s) option is significant only for code
destined for the segmented Z9000 processor. The procedures
in a shared code module can be invoked and executed by dif
ferent programs with independently allocated stacks, without
altering the shared code module. This is possible because
the local variable and parameters of a shared code module
are accessed on the~ calling program. Nonshared code modules
contain stack references in the code that are unchangeable
during execution.

The -1 options produces a pseudo-assembly languge listing of
the module. The listing file has the same name as the input
file with .1 substituted for the .z suffix. No assembly
listing is produced for the data in-the module and there are

4-1 Zilog 4-1

PLZ/SYS Zilog PLZ/SYS

no symbolic labels. References to code are prefaced by the
letter P; local data by .L; global data by G.

The -v option causes plzcg to announce its presence when it
starts and to tell how much code and data were produced when
it finishes.

On the Z8000, stack-independent addressing of local and
parameter data is achieved with loss of spee~d and compact
ness, so only modules that must be shared should be code
generated with the shared code option. The effects of the
shared code option are described in more detail in Section
5.4.

4-2 Zilog 4-2

PLZ/SYS Zilog

SECTlON 5
PLZ/SYS IMPLEMENTATION

CONVENTIONS FOR THE Z8000

NOTE

PLZ/SYS

Refer to Section 2 for applicability of these con
ventions to your release of PLZ/SYS and use of
library functions.

5.1. Overview

This section describes PLZ/SYS progr~m conventions for the
Z8000. Included are details on data representation, data
alignment, data access methods, run-time storage administra
tion, and register conventions. This section concludes with
a specification of the run-time environment required for
proper program execution. It is assumed that the reader is
familiar with the information in the Z8000 PLZ/ASM Assembly
Language Programming Manual.

5.2. Data Representation

This section defines the representation
fined simple types available in PLZ/SYS
SHORT INTEGER, WORD, INTEGER, LONG,
pointer, and the storage layout of
ARRAY and RECORD.

of the seven prede
on the Z8000: BYTE,

LONG INTEGER, and
the structured types

5.2.1. Primitive Data Type Repr~sentation:
predefined simple data types available in
represented on the Z8000 as follows:

The seven
PLZ/SYS are

BYTE

A BYTE value is a nonnegative integer in the range 0 to 255
(decimal) and is represented on the Z8000 as an unsigned
eight-bit byte.

SHORT INTEGER

A SHORT INTEGER value is an integer in the range -128 to 127
and is represented on the Z8000 as a signed eight-bit byte
in twos-complement notation.

5-1 Zilog 5-1

PLZ/SYS Zilog

WORD

A WORD value is a nonnegative integer
65535 (decimal) and is represented
unsigned 16-bit word.

INTEGER

PLZ/SYS

in the range 0 to
on the Z8000 as an

An INTEGER value is an integer in the range -32768 to 32767
and is represented on the Z8000 as a signed 16-bit word in
twos-comple:ment notation.

LONG

A LONG value is a nonnegative integer in thE~ range 0 to
4,294,967,295 (decimal) and is represented on the Z8000 as
an unsigned 32-bit long word.

LONG INTEGE:R

A LONG IN'I'EGER value is an integer in the! range
-2, 14 7, 483, 648 to 2, 14 7, 483, 64 7 and is representE!d on the
Z8000 as a signed 32-bit long word in twos-complement nota
tion.

Pointer

Nonsegmented code:

A pointer value on the nonsegmented Z8000 is a storage
address rE~presented as a 16-bit word. ThE~ distinguished
value NIL is represented by the value zero (0).

Segmented code:

A pointer value on the segmented Z8000 is a storage address
composed of a seven-bit segment number and a 16-bit offset,
represented as a 32-bit long word. The value of thE~ pointer
literal NIL is the long value zero (address 0) :: segment
zero, offset zero.

5-2 Zilog 5-2

PLZ/SYS Zilog PLZ/SYS

NOTE

Because the size of a pointer is inherently depen
dent on specific machine configurations, programs
that are to be easily transported from one
machine to ctnother the user must avoid mixing
pointer and nc>npointer values in expressions.

5.2.2. Structured Data
structured types ARRAY
Z8000 as follows:

Type
and

Representation: The PLZ/SYS
RECORD are represented on the

ARRAY·

Elements of an array are allocated consecutively into
ascending storage addresses, beginning with element zero.
Arrays are subject to the alignment constraints described in
the next section.

RECORD

Fields within a record are stored in the order of declara
tion, subject to the alignment rules in Section 5.3.

5.3. Data Alignment

On the Z8000, all word and long data must begin on even
a.ddresses. The compiler aligns the data on even addresses
relative to the start of a module. The compiler, code gen
erator, and zs00e1 assembler also extend each module to an
even length. Thus, if the first module begins on an even
address, all word and long data in that module and the
PLZ/SYS modules that follow are correctly aligned.

The amount of storage wasted by aligning data is usually
negligible, but becomes significant with the creation of
certain structures. To avoid excessive waste, it is impor
tant to understand the following rules. The same rules are
used by the Z8000 assembler, so that global data in PLZ/SYS
can be accessed from assembly language and vice versa.

Rule 1:

Rule 2:

5-3

A structure (array or record) is aligned only if
it contains a component that must be aligned.

A structure is padded to even length only if it
contains a component that must be aligned.

Zilog 5-3

PLZ/SYS Zilog PLZ/SYS

Rule 3: Record fields are stored in the order declared and
individually aligned as needed.

The following examples illustrate these rules:

TYPE
RREC RECORD [Fl, F2, F3 BYTE]
SREC RECORD [Fl BYTE; F2 WORD; F3 BYTE]
TREC RECORD [Fl, F3 BYTE; F2 WORD]

INTERNAL

A ARRAY [9 BYTE]

B ARRAY [3 WORD]

C RREC

D ARRAY [5 RREC]

E SREC

F ARRAY' [5 SREC]

G TREC

H ARRAY [5 TREC]

Unaligned; 9 bytes

Aligned; 6 bytes !

Unaligned; 3 bytes

! Unaligned; 15 bytes !

Aligned; 6 bytes (alignment byte !
after Fl and padding byte after F3)

Aligned; 30 bytes--10 bytes wasted

Aligned; 4 bytes--no waste 1

Aligned; 20 bytes--no waste

Example D shows an array of records that do not have to be
aligned. Examples G and H show how the information con
tained in variables E and F can be arranged more compactly.
Such compactness is achieved by placing the fields that
require alignment before the fields that do not require
alignment in a record or by ensuring that all fields requir
ing alignment occur at an even offset from the start of the
record.

In PLZ/SYS, the same storage area can be treated through
pointers and type conversion. However, the contents of an
unaligned structure cannot be treated as aligned objects.
For example, the following program section might not execute
as intended:

5-4

TYPE
PTREC ATREC ! TREC defined above

INTERNJl~L

PTRT PTREC
A ARRAY [(SIZEOF TREC) BYTE]

Zilog 5-4

PLZ/SYS Zilog PLZ/SYS

W WORD

PTRT := PTREC #A[0]
W := PTRTA.F2 Fails if A begins on odd address

To force A to be aligned, use

A ARRAY [(SIZEOF TREC)/2 WORD]

There is no guarantee that the compiler will allocate data
variables in order; consequently, a variable or structure
that does not require alignment (for example, a byte array)
might not be aligned even if it is declared immediately
after an aligned variable of even length. However, a vari
able appearing alone in a module is aligned.

5.4. Data Access Methods

Data accessible to PLZ/SYS programs is divided into two
storage classes: static data that is declared GLOBAL,
INTERNAL, or EXTERNAL, and dynamic data that is declared
LOCAL or declared as parameters.

Static data is allocated once, before execution begins, and
is accessed by absolute addresses embedded in the code. On
the Z8000, Direct Addressing mode is used to access static
data.

Dynamic data is allocated during program execution on a
run-time stack. The input and output parameters in a pro
cedure are allocate!d on the stack before invoking the pro
cedure. The calle!d procedure allocates its local variables
when it receives control. Within the body of the procedure,
the input parameters passed to it, as well as the output
parameters it yields, are accessed in exactly the same
manner as local variables.

Based Addressing i.s the appropriate mode for accessing
dynamic data on the Z8000. However, Based Addressing is
available on only a restricted set of machine instructions.
On the nonsegmented Z8000, Indexed mode is equivalent to
Based mode, and can be used in most instructions to achieve
the effect of Based Addressing. On the segmented Z8000,
Indexed and Based modes are functionally distinct. However,
Indexed mode can be used to access dynamic data by embedding
the segment number of the Local Stack in the code. Use of
Indexed Addressingr implies that the Local Stack is res
tricted to the segment specified by the code. This segment
number is placed in the code during absolute address assign
ment, usually performed by the Imager.

5-5 Zilog 5-5

PLZ/SYS Zilog PLZ/SYS

If Indexed Addressing, instead of Based Addressing, is used
for accessing dynamic data on the segmented Z8000, the code
is more corrpact; it cannot be shared by independent pro
grams. Because Indexed Addressing mode specifies the seg
ment number in the code, it is impossible for distinct pro
grams to share the code and not share local and parameter
data as well. To allow for sharing at the expense of less
efficient code, the code generator option SHARED can be
specified cm the conunand line. This ensures that local and
parameter data is always accessed using Based Addressing
mode.

5. 5. Run-'1~ime Storage Administration

PLZ/SYS procedures allocate local variables, expression tem
poraries, and parameters on a run-time stack. Stac~~s on the
Z8000 grow toward lower addresses, so the most recently
allocated word (top) of a stack is at the lowest address.
Storage is allocated by decrementing a stack pointer and is
released by incrementing the pointer. Stack pointers always
refer to the top word on the stack, which must be at an even
address.

The diagrams in this section show stacks as 16 bits wide,
growing up toward the top of the page. Nonsegmented stacks
are drawn with their base at storage address FFFEi~ actual
stacks can begin anywhere. Segmented diagrams show each
stack occupying an entire segment, growing up from storage
address 1'.,PFE in each segment. To move the stack pointer up
the stack, it must be decremented. In the following discus
sion, the word "above" means "closer to the top of the
stack." An item above another on the stack is closer to the
top of the diagram and is located at a lower memory address.

s.s.1. Nonsegmented Code: Nonsegmented code uses a single
run-time stack. The portion of the stack visible to a sin
gle procedure can be divided into several zones (Figure 5-
1) .

The address of the top word on the stack is maintained in
register Rl5, the Stack Pointer (SP) register. The two
lowest zones, at the highest storage addresses, contain the
return and input parameters passed by the caller. These
zones are allocated on the stack by the calling procedure
during the calling sequence.

5-6 Zilog 5-6

PLZ/SYS Zilog PLZ/SYS

LOW ADDRESS 0

STACK
HIGH ORDER HIGHER ADORES
<--BYTE--> <--BYTE-->

2 1
\
\

STACK GROWS TOWARD \
LOWER ADDRESSES \

SP(Rl5)----->

LB(Rl4)----->

I \
I \

I \
II

I I
I I TOP STACK WORD

~--IN--PU_T_ PARAMETER
PASSING AREA

RETURN PARAMETER
RECEIVING AREA

TEMPORARY
EVALUATION AREA

OLD LB

RETURN ADDRESS

LOCAL VARIABLES

INPUT PARAMETERS
FROM CALLER

RETURN PARAMETERS
TO CALLER

\ \
\ \

FFFC I I
HIGH ADDRESS FFFE I I BASE STACK WORD

------------------~

Figure 5-1 Nonsegmented Run-Time Stack--General Layout

5-7 Zilog 5-7

PLZ/SYS Zilog PLZ/SYS

Immediately above the input parameters are the local vari
ables. These are allocated at the start of the procedure
before execution of the procedure body.

Above the local storage area are two words of control link
age information. The word immediately abovE~ local storage
contains the return address. The next word contains the
caller's Local Base address, which must be restored in
register Rl.4 before it is returned to the cctller. During
execution of the procedure body, register Rl4, the Local
Base (LB) register, addresses this word. Local and parame
ter data is referenced by a positive offset from the LB
register.

Above the c~ontrol information is a dynamic:ally changing
expression evaluation area. The expression stack provides
temporary s1torage for immediate results during the evalua
tion of arithmetic and logical expressions and receives
parameters from, and passes arguments to, proc:::edureeJ invoked
during evaluation of the body.

All parameters reside in an even number of bytes. Parame
ters of c>dd length are padded to an even number of bytes,
and aligned on an even address. Byte parameters reside in
the low-order eight 'bits of a word value, with an undefined
high-order byte.

5.5.2. Se~JID.ented Code: Segmented code uses two stacks,
Control and Local (Figure 5-2). The Local Stack contains
all local variables, expression temporaries, and input and
return parameters. The Control Stack containE; return
addresses and fixed-base pointers to the Local Stack. Nei
ther stack is allowed to span se~ments. By separating
return addresses from parameters, the two-stack scheme
enables faster procedure linkage than that achieved using a
single stack.

The portion of the Local Stack visible to any one procedure
can be divided into the following zones. Return parameters
delivered by the procedure occupy the lowest zone on the
page, at the highest memory address. Above the return
parameters in the diagram are the input parameters passed to
the procedure. Storage for local variables declar1ed within
the procedure occupy the next zone. The uppermost :zone, at
the lowest memory address, is the expression evaluation
area. This includes temporaries and parameters pa:esed to,
and slots for results received from, procedures called by
this routine ..

5-8 Zilog 5-8

PLZ/SYS Zilog PLZ/SYS

CONTROL S'I~ACK

HIGHER ORDER HIGHER ADDRESS
CONTROL STACK

HIGHER ORDER HIGHER ADDRESS
<--BYTE--> <--BYTE--> <--BYTE--> <--BYTE-->

0 I 0
\ \ \STACK GROWS TOWARD\
\ \ \ LOWER ADDRESES \

I I \
I I \
1 I \

II
I I
I I

LP(RR12)--> INPUT PARAMETER
PASSING AREA

RETURN PARAMETER
RECEIVING AREA

STACK GROWS
TOWARD

LOWER ADDRESSES TEMPORARY
I \ EVALUATION AREA

I \
I \ ---------->
II I LOCAL VARIABLES

I I I
I I I

CP(RR14) I INPUT PARAMETERS
- FIXED BA.SE I FROM CALLERS

I

·RETURN PARAMETERS
RETURN ADDRESS TO CALLER

\ \ \ \
\ \ \ \

FFFC I I FFFC I I
FFFE I !HIGH ADDRESS I I

FFFE

Figure 5-2 Segmented Run-Time Stacks--General Layout

5-9 Zilog 5-9

PLZ/SYS Zilog PLZ/SYS

The location of parameters is such that input parameters are
evaluated and pushed on the stack, and return parameters are
on the top of the stack following completion of a procedure
call.

The Local Stack Pointer (LP) addresses the top word on the
Local Stack and is maintained in register pair RR12. Param
eters are passed by pushing them on the Local Stack~ result
parameters are accessed by popping them off. Local vari
ables are accessed relative to LP, using either Based or
Indexed Addressing modes. The local base address is not
maintained in a register as with nonsegmented code. The
displacement of local variables from LP varies during execu
tion as temporaries or parameters are pushed and popped.
However, the movement of LP is predictable during C!ode gen
eration and offsets to local variables can be adjusted for
each referEmce.

The Control Stack Pointer (CP) addresses the top word of the
Control Stack and is maintained in register pair RRJ.4. This
register is used by the Call and Return instructions to
deposit and restore the program counter. Before E~xecution
of the procedure body, the location of the lowest-address
word of local storage is pushed on the Control Stack. This
address is not required for execution, but it is useful for
run-time debugging since local and parameter data are diffi
cult to locate, due to the transient nature of LP.

5.6. RegiHter Conventions

In both se9mented and nonsegmented code, two addreSE3 regis
ters are dedicated to specific purposes. 'I'hese registers
are used in accordance with the run-time storage management
conventions outlined in Sections 5.5, 5.5.1, and s.s.2. All
other registers are available for local assignment within
the body of a procedure and are subj~ct to modification dur
ing any procedure call.

S.6.1. Nonsegmented Code: Register assignments in nonseg
mented codE:? are:

5-10

Rl5
Rl4
R0-Rl3

Stack Pointer
Local Base
Unassigned

(SP)
(LB)

Zilog 5-10

PLZ/SYS Zilog PLZ/SYS

Procedures use registers 0 through 13 without saving their
contents. The LB register, Rl4, is saved. Procedures
remove input parameters passed to them on the stack. The SP
register, Rl5, addresses the first return parameter after
completion of value-returning procedure~.

5.6.2. Segmented Code: Register assignments in segmented
code are:

RR14
RR12
R0-Rll

Control Stack Pointer
Local Stack Poiriter
Unass: igned

(CP)
(LP)

Procedures use Registers 0 through 11 without saving their
contents. CP, RR14, is saved. Procedures deallocate input
parameters passed to them on the Local Stack. LP, RR12,
addresses the first return parameter after completion of
value-returning procedures.

5.7. Execution Preparation

To run PLZ/SYS prog·rams on a standard Z8000, the run-time
environment, assumed by the conventions specified in Section
5. 6. 2, must be established. , The ZEUS Operating System
automatically provides this function for PLZ/SYS programs,
executed by System 8000. The preparations necessary for
running segmented and nonsegmented code follow.

5.7.1. Nonsegmented Code: A region of memory adequate for
the run-time stack must be allocated; the SP register must
be set to the next highest word address. The first word
allocated on the stack is at the highest memory address
reserved for the stack. Any parameters for the main pro
cedure must be passed in accordance with the calling conven
tions for nonsegmented code explained in Section 5.5.1. A
return address is pushed on the stack and the main procedure
is invoked by loading its entry address into the program
counter. (This can be achieved by executing a call instruc
tion.) The LB register does not require initialization.

5.7.2. Segmented Code: Segmented code requires the alloca
tion of memory for two run-time stacks: the Control Stack
and the Local Stack. These two stacks must not overlap.
The CP register must be set to the next highest word address
above the region reserved for the Control Stack. The LP
register must be siet to the next highest word address above
the Local Stack.

5-11 Zilog 5-11

PLZ/SYS Zilog PLZ/SYS

On the Z8000, words must be located at an even memory
address, so the contents of both LP and CP must be even.
When LP and CP are properly initialized, any parameters for
the main procedure must be pushed on the Local Stack in
accordance with the calling conventions for segmented code
outlined in Section 5.5.2. A return address must be pushed
onto the Contra 1 Stack, and the main procE~dure must be
invoked by loading its entry address into thE~ program
counter. (This can be achieved by executing cl call instruc
tion.)

As described in Section 4.4, programs containing modules
processed by the code generator without the shared code
option can specify the segment number of the Local Stack.
For proper execution, the LP register should be initialized
to address the next segment.

5-12 Zilog 5-12

PLZ/SYS Zilog PLZ/SYS

SECTION 6
PLZ/SYS - PLZ/ASM INTERFACE EXAMPLE

NOTE

Refer to Section 2 for applicability of these con
ventions to your release of PLZ/SYS and use of
library functions.

6.1. Purpose

This section presents an Example module written in PLZ/SYS,
and shows equivalent modules written in PLZ/ASM for both
segmented and nonsE~gmented Z8000. The PLZ/ASM equivalents
conform to PLZ/SYS run-time conventions and can be substi
tuted for the PLZ/SYS module as part of a larger program.
This Example can be used as a model for writing PLZ/SYS
compatible modules in PLZ/ASM.

'I'he PLZ/SYS version is listed in Example #1. The module
declares the procedure Example, whose only statement is a
recursive call to itself. This Example illustrates the
PLZ/SYS parameter passing conventions.

EXAMPLE #1:

PLZSYS
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

3.1

1
2

Example MODULE

1 Example! PLZ/SYS module demonstrating procedure
1 calling conventions.

GLOBAL

Example
PROCEDURE (inl: BYTE;
RETURNS (outl: BYTE;
LOCAL

in2: A.BYTE)
out2: WORD)

local!, local2, local3: BYTE
ENTRY

outl, out2 := Example (local2, in2)
END Example

END Example

END OF COMPILATION: 0 ERROR(S) 0 WARNING(S)
SYMBOL TABLE 0 DATA BYTES 14 Z-CODE BYTES 2% FULL

6-1 Zilog 6-1

PLZ/SYS Zilog PLZ/SYS

Z8000ASM 2.0
LOC OBJ CODE STMT SOURCE STATEMENT

0000

0000 97F0
0002 ABF3
0004 93F0
0006 93FE
0008 AlFE

000A ABF3

000C 30E8 ''1005
0010 93F0

0012 53FE 0008

0016 D00C

0018 57FE 1000C

001C 57FE 000E

0020 97FE
0022 97Fl
0024 A9F7
0026 1El8
0028

6-2

1 Example MODULE
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

l Example module written in PLZ/AS:M
1 for the nonsegmented Z8000

CONSTANT
1 Off sets
out2 :=
outl :=
inl :=
in2 :=
local3 :=
local2 :=
locall :=

from
14
13
11

local base R

GLOBAL

Example
PROCEDURE
ENTRY

8
6
5
4

1 --- Entry Sequence --- 1
POP
DEC
PUSH
PUSH
LD

R0,@Rl5 1 Pop return address
RlS,#4 l Allocate local variablesJ
@R15,R0 1 Replace return address J

@R15,Rl4 1 Save old Local Base l
R14,Rl5 1 Establish new Local Basel

1 outl,. out2 :=Example (local2, in2)
DEC RlS,#4 1 Allocate JCeturn params

LDB
PUSH

RL0,R14(#local2)
@Rl5,R0 l Push 1st input pararn

PUSH @Rl5,in2(Rl4) Pu~h 2nd input pararn

CALR Example

POP outl-l(Rl4),@Rl5 Pop 1st return pararn

POP out2(Rl4),@Rl5

1 --- Exit Sequence
POP Rl4,@Rl5
POP Rl,@Rl5
INC RlS,#8
JP @Rl

END Example

Zilog

Pop 2nd return param

--- 1
1 Restore old Local Base
l Pop return address
1 Pop locals & input param
l Resume cailing procedure

6-2

PLZ/SYS Zilog

49 END Example
0 error

Assembly complete

Figure 6-1 Example 2: PLZ/ASM Module
for the Nonsegmented S8000

6.2. Nonsegmented. Code

PLZ/SYS

An equivalent module written in PLZ/ASM for the nonsegmented
Z8000 appears in Example #2 (Figure 6-1).

The entry sequence executed before the body of Example is
shown in lines 22 through 26. First, the return address is
popped from the stack, where it was deposited by the invok
ing call instruction. This produces storage for the three
local variables to be allocated contiguously with the input
parameters by decrementing the Stack Pointer register. The
return address is then pushed back on the stack. The value
of the Local Base register is preserved on the stack for
restoration prior to resumption of the calling procedure.
Finally, addressing of local stcirage and parameters is esta
blished by setting the Local Base register to the current
Stack Pointer register. Lines 22 through 24 are omitted if
no local variables are declar:ed by Example.

Figure 6-2 depicts the displayed run-time stack after the
,entry sequence for Example has been completed. The Local
Base register addresses a word containing the caller's Local
Base address. The next word deeper in the stack contains
the return address. The local variables begin at offset
four from the local base. Although the compiler does not
guarantee that local storage is allocated in the order
shown, two-byte variables can be packed into one word, as
demonstrated by the variables local! and local2.

Parameters passed as input to the routine reside beyond
local storage at higher storage addresses. The last parame
ter declared, in2, is closest to the Local Base since it was
pushed last. The parameter inl is padded to word length.
All parameters occupy at least one word; byte parameters are
extended to word length, with the upper byte undefined.
Storage for the result parameters yielded by Example resides
beyond the input parameters, at higher storage addresses.
The first return parameter declared resides closest to the
Local Base, ready to be popped from the stack after Example
returns to its caller. Byte return parameters always occupy
the low-order (high-address) byte of a word, with a high
order byte of undefined value.

6-3 Zilog 6-3

PLZ/SYS Zilog

S'fACI<

HIGHER ORDER HIGHER ADDRESS
<--BYTE--> <--BYTE-->

LOW ADDRESS 0

SP LB----->

\
\

OLD LB

RETURN ADDRESS

locall local2

local3 unused

in2

unused I inl
I

unused I outl
I

out2

\
\

\ \
\ \
I I

HIGH ADDRESS FFFFE I I
~~~~~~~~~~~-

PLZ/SYS 

Figure 6-2 Nonsegmented Run-Time Stack Deta.il After Entry 
Sequence (Before Line 29 in Example #2} 

6-4 Zilog 6-4 



PLZ/SYS Zilog 

STACK 
HIGHER ORDER HIGHER ADDRESS 

<--BYTE--> <--BYTE--> 

LOW ADDRESS 0 I I 

SP------> 

LB------> 

\ \ 
\ \ 

2nd INPUT PARAM 

unused f lstIN PARM 
I __ u_n_u_s_e_d__,__ I _l_s_t_R_E_S_U_L_T_ 

--------~'---------2nd RE.SULT PARAM 

OLD LB 

RETURN ADDRESS 

locall local2 

local3 unused 

in2 

unused I inl 
I 

unused I outl 
I 

out2 

\ \ 
\ \ 
I I 

HIGH ADDRESS FFFE I I -------------------

PLZ/SYS 

Figure 6-3 Nonsegmented Run-Time Stack Detail Before 
Recursive Call (Before Line 36 in Example #2) 

Lines 29 through 40 demonstrate a typical call to Example. 
Comparable code is used for any call to Example from other 
modules. Storage for the two return parameters is allocated 
by decrementing the Stack Pointer register. Then the input 
parameters are evaluated and pushed onto the stack in their 

6-5 Zilog 6-5 



PLZ/SYS Zilog PLZ/SYS 

order of declaration. Figure 6-3 shows the visibl1e portion 
of the stack prior to executing the call in line 36. 

If Example returns from its recursive call, the Stack 
Pointer register addresses the first return parameter. Pop
ping it frc:>m the stack exposes the second return parameter. 
Popping thie second parameter leaves the Stack Pointer regis
ter equal to the Local Base register, as it was before line 
29 was executed. 

The standard procedure exit sequence for nonsegmented code 
appears in lines 43 through 46. Before line 43 is executed, 
the stack configuration is the same as it was immediately 
after execution of the entry sequence. The Stack Pointer 
and Local Base registers are equal and address the word con
taining the caller's Local Base address saved during the 
entry sequence. The Local Base of the calling procedure is 
popped from the stack into the Local Base register and the 
return address is popped into a temporary register. Next, 
the local storage and input parameters are: deallocated by 
incrementing the Stack Pointer. The Stack Pointer register 
addresses the first return parameter. Execution of the cal
ling procedure is resumed by jumping to the return address. 
If local variables or input parameters are not declared by 
Example, lines 44 through 46 are replaced by a return 
instruction. 

6.3. Segm.ented Code 

An equivalent module written in PLZ/ASM for the segmented 
Z8000 appears in Example #3 (Figure 6-4). In segmented 
code, parameters and locals are allocated on the Local 
Stack, while control information resides on the Control 
Stack. Locals and parameters are stored in the same order, 
but are accessed relative to the floating Local Pointer 
rather tha.n to a fixed base address. This requires. compen
sation for movement of the Local Pointer each time local or 
parameter data is referenced. 

The entry sequence in lines 26 and 27 is executed before the 
body of Example. Line 26 allocates storac.;re for the three 
local variables on the Local Stack adjacent to the input 
parameters. Line 27 saves the address of thE! lowest word of 
local storage on the Control Stack. This value is addressed 
by the Control Stack Pointer register during execution of 
the procedure body and locates the base of local storage for 
the procedure. This value is not maintained in a register, 
since it is not needed for execution, but it is extremely 
helpful during debugging. 

6-6 Zilog 6-6 



PLZ/SYS Zilog PLZ/SYS 

Z8000ASM 2.0 
LOC OBJ CODE STMT SOURCE S~ATEMENT 

0000 

0000 ABD3 
0002 91EC 

0004 ABD3 

0006 30C8 0005 
000A 93C0 

000C 35C0 000A 
0010 91C0 

0012 D00A 

0014 57CD 00 0E 

0018 57CD 00 0E 

001C A9D9 
001E A9F3 
0020 9E08 
0022 

6-7 

1 Example MODULE 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 

1 Example module written in PLZ/ASM 
1 for the segmented Z8000. 

$SEGMENTED 

CONSTANT 
LSseg := 0 

! Off sets 
out2 := 
outl := 
inl := 
in2 := 
local3 := 
local2 := 
locall := 

GLOBAL 

:Example 
PROCEDURE 
ENTRY 

from 
12 
11 

9 
4 
2 
1 
0 

Local Stack Segment 

base of locals 1 

! --- Entry Sequence --- 1 
DEC Rl3,#4 1 Allocate local variables 
PUSHL @RR14,RR12 1 Save Fixed Base (optional) 

1 outl, out2 := Example (local2, in2) 1 
DEC Rl3,#4 1 Allocate return parameters 

RL0,RR12 (#local2+4) LDB 
PUSH @RR12,R0 1 Push 1st input parameter 

LDL RR0,RR12(#in2+6) 
PUSHL @RR12,RR0 1 Push 2nd input parameter 

CALR Example 

POP l<<LSseg>>outl-1+4 I (Rl3),@RR12 1 1st resu: 

POP l<<LSseg>>out2+2 I (Rl3),@RR12 1 2nd result! 

1 --- Exit Sequence --- 1 
INC Rl3,#10 1 Pop locals & input params 
INC Rl5,#4 1 Pop fixed base 
RET 1 Resume calling procedure 
END Example 

Zilog 6-7 



PLZ/SYS Zilog 

49 
50 END Example 

0 errore; 
Assembly complete 

Figure 6-4 Example 3: PLZ/ASM Module 
for the Segmented S8000 

PLZ/SYS 

Figure 6-5 displays the portions of the two run-time stacks 
visible to Example after execution of the entry sequence. 
Parameters and local variables reside on the Local Stack. 
Return addresses and Local Base addresses reside on the Con
trol Stack~ The size of parameter in2 is four bytes, since 
segmented addresses occupy long words. 

Lines 30 through 42 demonstrate a proper call to Example. 
The sequence of events is identical to that of nonsegmented 
code. Parameters are pushed on the Local Stack. The confi
guration of the run-time stacks before execution of the call 
instruction in line 38 is shown in Figure 6-6. 

If Example returns from its recursive call, the Local Stack 
Pointer re9ister addresses the first return parameter. Pop
ping it from the Local Stack exposes the second return 
parameter. Popping the second parameter positions the Local 
Stack Pointer register at the lowest-address word of local 
storage. 

The exit sequence is shown in lines 45 through 47. Before 
line 45 is executed, the Control and Local Stack Pointer 
registers contain the same values they had after the entry 
sequence~ The local variables and input parameters are 
deallocated by incrementing the Local Stack Pointer regis
ter. This leaves the Local Stack Pointer register address
ing the first return parameter. The local storage base 
address is removed from the Control Stack, and the return 
instruction pops the return address from the Control Stack 
and· resumes the calling procedure. If no local variables or 
input parameters are declared by Example, line 45 :is omit
ted. 

6-8 Zilog 6-8 



PLZ/SYS Zilog PLZ/SYS 

CONTROL STACK CONTROL STACK 
HIGHER ORDER HIGHER ADDRESS HIGHER ORDER HIGHER ADDRESS 

<--BYTE--> <--BYTE--> <--BYTE--> <--BYTE--> 

0 ----r LOW ADDRESS 0 
\ \ \ \ 
\ \ \ \ 
I I 
J I 
I I 
I I 
I I ----·--LP---> locall local2 
I I I 
1 I I local3 unused 

I I 
I I 

C.P----> I I in2 
- FIXED BASE -I I ,- unused inl 

I 
RETURN ADDRESS I unused outl 

I 
I out2 
I 

t I 
I I 
\ \ \ \ 
\ \ \ \ 
I I I I 

FFFE I I HIGH ADDRESS I I 
FlFFE 

Figure 6-5 Segmented Run-Time Stack Detail After Entry 
Sequence (Before Line 30 in Example #3) 

6·-9 Zilog 6-9 



PLZ/SYS Zilog PLZ/SYS 

CONTROL STACK CONTROL S'rACK 
HIGHER ORDER HIGHER ADDRESS 

<--BYTE--> < BYTE--> 
HIGHER ORDER HIGHER ADDRESS 

<--BYTE--> <--BYTE--> 

CP----> 

FFFE 

- FIXED BASE -

i 
!RETURN 
I 
I 
I 
I 
\ 
\ 
I 

ADDRESS 

LOW ADDRESS 0 I 
\ \ 
\ \ 

LP----> 
2nd INPUT PARAM 

unused llstIN PARA 
I 

_u_n_u_s_e_d-llst RESULT 

I ----2nd RESULT PJ\.RAM 

----------> locall local2 
I 
I local3 unused 
I 
I 
I in2 
I 
I unused inl 

unused outl 

out2 

I 
\ 
\ 

\ \ \ 
\ \ \ 
I HIGH ADDRESS I I ------ ------------FFFE 

Figure 6-6 Segmented Run-Time Stack Detail Before 
Recursive Call (Before Line 38 in Example #3) 

6-10 Zilog 6-10 



PLZ/SYS Zilog 

APPENDIX A 
PLZ/SYS ERROR MESSAGES 

PLZ/SYS 

The error messages in this appendix are shared with the 
PLZ/ASM assembler. Por a complete list of the PLZ/ASM error 
messages, refer to the ZEUS PLZ/AS~ User Guide (PLZ/ASM). 

ERROR 

1 
2 
3 
4 
t:• 
-> 
6 
8 

EXPLANATION 

Warnings 

A minus sign (-) or a plus sign (+) treated as 
binary opE~rator 

Missing delimiter between tokens 
Array of zero elements 
No fields in record declaration 
Mismatched procedure n'mes 
Mismatched module name• 
Constant out-of-range for type 
Absolute address warning for System 8000 

Token ErrorH 

10 Decimal number too large 
11 Invalid operator 
12 Invalid special character after prompt (%) 
13 Invalid hexadecimal digit 
14 Character sequence of zero length 
15 Invalid character 
16 Hexadecimal number too large 

DO Loop Err<>rs 

20 Unmatched OD 
21 OD expected 
22 Invalid repeat statement 
23 Invalid exit statement 
24 Invalid FROM label 

IF Statement. Errors 

30 Unmatched FI 
31 FI expected 
32 THEN or CASE expected 
33 Invalid selector record 

A-1 Zilog A-1 



PLZ/SYS Zilog PLZ/SYS 

ERROR EXPLANATION 

Symbols Expected 

40 ) expected 
41 ( expected 
42 ] expected 
43 [ expected 
44 := expected 
45 ~ expected 

Undefined Names 

50 Undefined identifier 
51 Undefined procedure name 

Declaration Errors 

60 Type identifier expected 
61 Invalid module declaration 
62 Invalid declaration class 
63 Invalid use of array [*] declaration 
64 Uninitialized array [*] declaration 
65 Invalid dimension size 
66 Invalid array component type 
67 Invalid record field declaration 
68 Invalid type used in pointer declaration 

Procedure Declaration Errors 

70 Invalid procedure declaration· 
71 ENTRY expected 
72 Procedure name expected after END 
73 Formal parameter name expected 
74 Invalid formal parameter type 

Initialization Errors 

80 Invalid initial value 
81 Too many initialization elements for 

declared variables 
82 Invalid initialization 
83 Array [*] gives single noncharacter __ sequence 

initializer 
84 Attempt to initialize an uninitialized data area 

A-2 Zilog A-2 



PLZ/SYS Zilog PLZ/SYS 

ERROR EXPLANATION 

Special Errors 

90 Invalid statement 
91 Invalid instruction 
92 Invalid operand 
93 Operand too large 
94 Relative address out of range 
95 : expected 
97 Duplicate record field name 
98 Duplicate CASE constant 
99 Multiple declaration of identifier 

Invalid Variables 

100 Invalid variable 
101 Invalid operand for # or SIZEOF 
102 Invalid field name 
103 Subscripting of nonarray variable 
104 Invalid use of period (.) 
105 Invalid use of A 

Expression Errors 

110 Invalid arithmetic expression 
111 Invalid conditional expression 
112 Invalid constant expression 
113 Invalid select expression 
114 Invalid index expression 
115 Invalid expression in assignment 

Constant Out of Bounds 

120 Constant too large for 8 bits 
121 Constant too large for 16 bits 
122 Constant array index out of bounds 

Procedure Ca.11 Errors 

130 Invalid arithmetic expression 
131 Invalid procedure call 
132 Procedure call with multiple out parameters expected 
133 Too few out parameters 
134 Too many out parameters 
135 Too few in parameters 
136 Too many in parameters 

A-3 Zilog A-3 



PLZ/SYS Zilog PLZ/SYS 

ERROR EXPLANATION 

Type Incompatibility 

140 Character sequence initializer used with 
array [*}declaration where component's 
base type is not 8 bits 

141 Type incompatibility with initialization 
150 Type incompatibility in arithmetic expression 
151 Invalid operand type for unary operator 
152 Invalid operand type for binary operator 
153 Unassigned type 
154 Invalid index type 
156 Parameter type incompatible 
157 Invalid actual parameter 
158 Re:turn parameter type incompatible 
159 Return value must be address 
160 Type incompatibility in assignment 
161 Invalid operand type for relational operator 
162 Type incompatibility in conditional E~xpression 
163 Invalid type conversion 
164 Invalid relational operator for structures 

Fi.le Errors 

198 EOF expected 
199 Unexpected EOF encountered in source--possible 

unmatched 1 or 1 in source 

Implementation Restrictions 

230 Character sequence or identifier too long 
231 Symbol table overflow 
232 Procedure too large 
233 Le!ft hand side of assignment too complicatE!d 
234 Too many initialization values 
235 Stack overflow 
236 Too many constants in expression 
237 Static data overflow 
238 Program area overflow 
239 Too many internal or global procedures 
240 Long constants not implemented 

A-4 

NOTE 

Errors1 larger than 240 can occur. If there arE~ no 
other errors in the program preceding •one of 
these errors, contact Zilog. 

Zilog A-4 



PLZ/SYS Zilog PLZ/SYS 

APPENDIX B 
PLZCG E:RROR NUMBERS AND EXPLANATIONS 

When the capacity of the code generator's internal tables is 
exceeded, the code generator aborts with an appropriate 
error message. This error can usually be corrected by 
increasing the size of the unallocated memory region, which 
the code generator uses for these tables. If this is not 
effective, the source must be modified to reduce its table 
requirements. 

ERROR EXPLANATION 

1 Inappropriate z-code format. The z-code file was 
probably produced by an outdated version of the 
PLZ/SYS compiler. Recompile the source module using 
the companion PLZ/SYS ,compiler; specify the Z8000 as 
the target machine. 

2 Statement too large 

3 Expression too large 

4 Procedure call nesting too deep 

5 Too many internal and global procedures defined in 
module 

6 Too many alternatives in select statement 

7 Procedure too large 

B-1 

NOTE 

Error numbers :higher than 7 should be reported to 
Zilog along ,with any.pertinent information con
cerning their 1occurrence. 

Zilog B-1 





The Screen Interface Library 



SCREEN Zilog SCREEN 

ii Zilog ii 



SCREEN Zilog SCREEN 

Pref ace 

This document describes a package of C library functions 
which allow the user to: 

(1) update a screen with reasonable optimization, 

(2) get input from the terminal in a screen-oriented 
fashion, and 

(3) independent from the above, move the cursor optimally 
from one point to another. 

These routines all use the /etc/termcap database to describe 
the capabilities of the manual. 

iii Zilog iii 



SCREEN Zilog SCREEN 

iv Zilog iv 



SCREEN Zilog SCREEN 

Table of Contents 

SECTION 1 INTRODUC~rION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

SECTION 2 DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

SECTION 3 INVOCATION AND OPERATION••••••••••••••••••• 

3.1. 
3.2. 
3.3. 

P r o g r a mm i n g • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
Normal Termination •••••••••••••••••••••••••••• 
Abnormal Termination •••••••••••••••••••••••••• 

APPENDIX A SUMMARY OF LIBRARY ROUTINES••••••••••••••• 

APPENDIX B PROGRAMMING INFORMATION . . . . . . . . . . . . . . . . . . . 

APPENDIX C USER GU IDE •••••••••••••••••••••••••••••••• 

v Zilog 

1-1 

2-1 

3-1 

3-1 
3-1 
3-1 

A-1 

B-1 

C-1 

v 





SCR8EN Zilog 

SECTION 1 
INTRODUCTION 

SCREEN 

An effective method to convey information to a computer user 
is to output displays on the terminal screen. When presented 
with concise displays, users are able to respond quickly and 
easily. Visualizing the activities occurring on a computer 
system allows both user and machine to become more effec
tive. 

On the ZEUS system, the most commonly-used screen utility is 
the visual editor, vi. With vi, pages of text are displayed 
to allow more efficTent editing and movement within a file. 
The flexibility of vi, the screen editor, is immediately 
evident when compared with the line-oriented editor ed. In 
addition, vi is terminal-independent; it uses /etc/termcap, 
the terminaT capability data base, to interface ~a variety 
of terminal types. 

The Screen Interface Library is a library of functions 
(wroutines") for developing software with this screen
oriented or display approach. The routines in the library 
use /etc/termca£ for terminal-independency and the C~rses 
library (/usr/lib/libcurses.a)' because of its screen updat
ing capabilities. See the Curses entry in this manual. 

The Screen Interface Library includes routines that provide 
terminal setup, cursor manipulation using the arrow keys, 
single character input, highlighting of the cursored item, 
paging, scrolling, saving and restoring displays, obtaining 
the word on which the cursor lies, handling help files, and 
general last line handling. The individual routines are 
described in the ZEUS Reference Manual; the remainder of 
this document describes their use. 

1-1 Zilog 1-1 





SCREEN Zilog 

SECTION 2 
DESCRIPTION 

SCREEN 

The Screen Interface Library provides the programmer with a 
set of routines that allow cursor and screen manipulation 
for terminal displays. These terminal displays are columns 
of information (files names or a list) which are created 
using the Curses routines. 

The Screen Interface Library is considered to be an exten
sion of the Curses package since the routines themselves use 
the Curses package. This implies that the Screen Interface 
Library is terminal-independent which means a call to the 
Curses routine, initscr(), must be made for a screen pro
gram. This routine finds the terminal type and performs ter
minal initialization. 

Another feature of the Screen Interface Library is that the 
routines have adopted the window concept introduced in the 
Curses package. A window is defined as an internal 
representation containing an image of a section of the ter
minal screen. New windows are defined by using the following 
Curses call: 

win= newwin(lines, cols, begin y, begin_x); 

where win is a pointer to the structure WINDOW (this is 
defined in /usr/include/curses.h). 

As in the Curses package, most Screen Interface routines 
have two versions - a full screen version and a window ver
sion; these are defined in /usr/include/screen.h. This means 
that when the full screen version of the routine is used, 
the WINDOW pointer, stdscr, is assumed. For example, the 
routine getword gets a word from the full screen 

getword(string); 

and wgetword gets a word from a window 

wg et wo rd ( w i n , st r i n g ) ; 

Here is a list of the Screen Interface Library routines: 

1) goraw() 
sets up standard output for cbreak mode 

2-1 Zilog 2-1 



SCREEN Zilog SCREEN 

2) gonormal () 
resets the terminal back to its normal state 

3) getkey () 
gets a single key typed on the keyboard 

4) wgetword(win, string) 
get a word from the display 

5) wmesg(wl.n, string, data) 
output a message in standout mode on the last line of 
win 

6) wmvcursor(win, c, top, bottom) 
use the character c and move the cursor appropriately 
on win 

7) wforword(win, top, bottom) 
move to the beginning of the next word 

8) wbackword(win, top, bottom) 
move to the beginning of the previous word 

9) wforspace(win, top, bottom) 
move to the next space 

10) wbackspace(win, top, bottom) 
move to the previous space 

11) wright(win, top, bottom) 
move cursor to the right 

12) wleft(win, top, bottom) 
move cursor to the left 

13) whighlight(win, flag) 
highlight or unhighlight the word at the current posi
tion 

14) wsavescrn(win) 
save the contents of win 

15) wresscrn(win) 
restore a previously saved window and overwrite win 

16) wscroljE (win) 
scroll forward on win 

17) wscrolb(win) 
scroll backward on win 

2-2 Zilog 2-2 



SCREEN 4ilog SCREEN 

18) wpagefor(win, fp, top) 
page forward on win using the file associated with the 
pointer, fp 

19) wpageback(win) 
page backward on win 

20) wcolon(win) 
handle colon commands (for example, :q for quit) 

21) whelp(win, file) 
handle help commands using the help file, file 

As an optional feature during cursor movement, the cursored 
item can be displayed in standout mode to highlight the 
item. This is accomplished by setting the global flag, hil
ite, to TRUE. Also, note th~t all error and informational 
messages are displayed in standout mode on the last line of 
the window. 

A more detailed explanation for each of the Screen Interface 
Library routines is included in the Appendix A. 

2-3 Zilog 2-3 





SCREEN 

3.1. Programming 

Zilog 

SECTIPN 3 
Il~VOCATION AND OPERATION 

SCREEN 

When using the Screen Interface Library, the programmer must 
ensure that the following lines are included in the source 
program: 

#include <curses.h> 

#include <screen.h> 

These header files contain the, global definitions and vari
ables used by both the Curses and Screen Interface 
libraries. In addition, pseudo functions for the standard 
screen are defined; this means that the routine parameter, 
win, is assumed to be equivalent to the Curses variable, 
stdscr. For example, the routine call 

help(file) 

is defined as 

whelp(stdscr, file) 

When compiling the screen program, the following command 
line should be used: 

cc [flags] file.c -lscreen -lcurses -ltermlib 

3.2. Normal Termination 

Upon normal termination of a routine in the Screen Interface 
Library, the value OK (=l) or a specific value is returned 
(OK is defined in /usr/include/curses.h). Specific values 
(if any) returned by each routine are outlined in Appendix 
A. 

3.3. Abnormal Termination 

Upon abnormal termination of a routine in the Screen Inter
face Library the value ERR (=0) is returned (ERR is defined 
in /usr/include/curses.h). 

3-1 Zilog 3-1 





SCREEN Zilog SCREEN 

APPENDIX A 
SUMMARY OF LIBRARY ROUTINES 

This appendix contains descriptions of the routines avail
able 1n the Screen Interface Library. If applicable, there 
are two calling sequences available (one for a window and 
one for stdscr) where the w version of the routine can be 
applied to a window defined by the user. The alternate ver
sion of the routine assumes the standard or full terminal 
screen. 

go raw() 
This routine sets standard output for CBREAK mode; in 
addition, it sets the Curses flag, rawmode to TRUE 
( =l) • 

gonormal() 
This routine resets standard output back to its normal 
mode and resets rawmode back to FALSE (=0). 

getkey () 
This routine gets a single character input from the 
keyboard. 

If any of the arrow keys is typed, the standard defini
tion found in /usr/include/screen.h (i.e. left, down, 
up, and right) is returned. The following list con
tains the aliases for the arrow keys: 

left - h, CTRL-h, backspace 
down - j, CTRL-j 
up - k, C~rRL-k 

right ~ 1, CTRL-1, space 

Alternatively, if none of the arrow keys is typed, the 
character typed is returned. In addition, if a car
riage return is typed, the character \r is returned. 
This is because some terminals generate a line feed or 
\n character for the down a~row; therefore, a distinc
tion must be made between the RETURN key (which is 
mapped to line feed) and the down arrow key. 

wgetword(win, str) 
WINDOW *win; 
char *str; 

or 

A-1 Zilog A-1 



SCREEN Zilog SCREEN 

getword(str) 
char *str; 

This routine gets a word from the display and puts the 
string in str; if the word is highlighted in the 
display, the standout mode bit in each character is 
masked out and returned in str. 

wmesg(win, str, data) 
WINDOW *win; 
char *str; 
char *data; 

or 

mesg(str, data) 
char *str; 
char *data; 

This routine outputs the printf-formatted message, str, 
on the last line of win or stdscr. It is noted here 
that a newline or \n is not required since the message 
is output on the last line of the window. Any addi
tional data to be output (for example, for a %s in 
mesg), is stored in the variable, data. If there is no 
additional data (that is, str is a simple informational 
message), data should contain NULL. After outputting 
the message, the cursor is returned to the current 
position. 

wmvcursor(win, c, top, bottom) 
WINDOW *win; 
char 
int 

or 

c; 
top, bottom; 

mvcursor(c, top, bottom) 
char c; 
int top, bottom; 

A-2 

This routine uses the given character, c, to move the 
cursor appropriately about win within the display lim
its of the top and bottom line. The valid values for c 
(and therefore, valid cursor movements) are down, up, 
forward (or word) or backward as defined in 
/usr/include/screen.h (see Appendix B). If the bottom 
line limit is exceeded, the cursor will be moved to the 
top of the next column to the right or to the top of 
the leftmost column; therefore, there is cursor wra
paround. After the movement is performed, the routine 

Zilog A-2 



SCREEN Zilog SCREEN 

returns OK. If c represents an invalid cursor move
ment, the routine returns the value ERR. If the global 
flag, hilite, is set, highlighting of the word at the 
current cursor position is handled automatically. 

wforword(win, top, bottom) 
WINDOW *win; 
int top, bottom; 

or 

forword(top, bottom) 
int top, bottom; 

This routine moves the cursor to the beginning of the 
next word (to the right) on the display. If the cursor 
is at the bottom line of the rightmost column, the cur
sor is wrapped around to the top of the leftmost 
column. 

wbackword(win, top, bottom) 
WINDOW *win; 
int top, bottom; 

or 

backword(top, bottom) 
int top, bottom; 

This routine moves the cursor to the beginning of the 
previous word (to the left) on the display. If the cur
sor is at the leftmost position of the top line, the 
cursor is wrapped around to the last word of the right
most column. 

wforspace(win, top, bottom) 
WINDOW *win; 
int top, bottom; 

or 

forspace(top, bottom) 
int top, bottom; 

This routine moves the cursor to the right until a 
space is reached on the display. If the cursor is at 
the bottom line of the rightmost column, the cursor is 
wrapped around to the top of the leftmost column. 

wbackspace(win, top, bottom) 
WINDOW *win; 

A-3 Zilog A-3 



SCREEN Zilog SCREEN 

int top, bottom; 

or 

backspace(top, bottom) 
int top, bottom; 

This routine moves the cursor to the left until a space 
is reached on the display. If the cursor is at the 
leftmost position of the top line, the cursor is 
wrapped around to the last word of the rightmost 
column. 

wright(win, top, bottom) 
WINDOW *win; 
int top, bottom; 

or 

right(top, bottom) 
int top, bottom; 

This routine moves the cursor one position to the 
right. If the cursor is at the bottom line of the 
rightmost column, the cursor is wrapped around to the 
top of the leftmost column. 

wleft(win, top, bottom) 
WINDOW *win; 
int top, bottom; 

or 

left(top, bottom) 
int top, bottom; 

This routine moves the cursor one position to the left. 
If the cursor is at the leftmost position of the top 
line, the cursor is wrapped around to the last word of 
the rightmost column. 

whighlight(win, flag) 
WINDOW *win; 
int flag; 

or 

highlight(flag) 

This routine puts the word at the current cursor posi
tion in standout mode (thus, highlighting the word) if 

A-4 Zilog A-4 



SCREEN Zilog SCREEN 

flag is TRUE. If flag is FALSE, standout mode is turned 
off for the word at the current position. 

wsavescrn(win) 
WINDOW *win; 

or 

savescrn() 

This routine saves the contents. of win in the global WINDOW, 
scrn (found in /usr/include/screen.h), which is allocated 
memory in this routine. If there is a problem with the 
allocation, this routine returns ERR. Otherwise, the global 
flag scrnflg is set to TRUE, the contents of win is saved, 
and the routine returns OK. 

wresscrn(win) 
WINDOW *win; 

or 

resscrn () 

This routine tests the global flag, scrnflg (set to 
TRUE in wsavescrn) and checks whether the contents of 
the WINDOW scrn will fit on win. If so, the contents 
of scrn is overwritten onto win and the routine returns 
OK; otherwise, the routine returns ERR. 

wscrolf (win) 
WINDOW *win; 

or 

scrolf() 

This routine performs scrolling forward on win; this 
has not been implemented yet. 

wscrolb(win) 
WINDOW *win; 

or 

scrolb () 

This routine performs scrolling backward on win; this 
has not been implemented yet. 

A-5 Zilog A-5 



SCREEN Zilog SCREEN 

wpagefor(win, fp, top) 
WINDOW *win; 
FILE *fp; 
int top; 

or 

pagefor (fp, top) 
FILE *fp; 
int top; 

This routine outputs a page of the file associated with 
the pointer, fp. If the number of lines in win is 
exceeded, the prompt 

Type Af for next page 

is output. If Af is not typed, the routine returns; 
otherwise, the next page of data is output. 

wpageback(win) 
WINDOW *win; 
FILE *fp; 

or 

pageback () 
FILE *fp; 

This routine outputs the previous page of the file 
associated with the pointer, fp; this has not been 
implemented yet. 

wcolon(win) 
WINDOW *win; 

or 

colon () 

This routine handles the colon commands (the colon is 
echoed on the last line of win). A character followed 
by a carriage return is the expected typein; the rou
tine returns the character typed. 

whelp(win, file) 
WINDOW *win; 
char *file; 

or 

A-6 Zilog A-6 



SCREEN Zilog SCREEN 

help(file) 
char *file; 

This routine opens the given help file, file, and 
displays its contents; following the display, the ori
ginal screen is restored. If the help file cannot be 
opened or if there was a problem restoring the original 
screen, the routine returns ERR; otherwise, the rou
tine returns OK. 

Zilog A-7 





SCREEN Zilog SCREEN 

APPE~DIX B 
PROGRAMMING' INFORMATION 

This appendix contains a description of the contents of the 
header file, /usr/include/s6reen.h and the global messages 
available in the Screen Interface Library. 

These are simply definitions for the file descriptors for 
standard input, standard output, and standard error. 

#define 
#define 
#define 

INPILE 0 
OUTFILE 1 
ERHFILE 2 

The following macro is used by the library routines to 
interpret CTRL characters. 

#define CTHL(c) ('c' & 0xlf) 

These definitions are the standard keys used in the Screen 
Interface package. 

#define LEJ~T 'h' 
#define RIGHT ' 1 ' 
#define UP I k I 

#define DOWN I j I 

#define BACKWARD I b I 

#define FOHWARD I f I 

#define wmm I WI 

#define COLON I : I 

#define HELP I ? I 

#define PAGEFOR CTRL(f) 
#define PAGEBACK CTRL(b) 

The following list contains the aliases for the functions 
using stdscr; these definitions simply assume the variable 
win equals stdscr when writing programs for the standard 
terminal screen. 

/* 

NOTE 

The appearance of the following list has been 
modified due to space limitatons. Please see 
/usr/include/screen.h for the original text. 

* pseudo functions for standard screen 
*/ 

B-1 Zilog B-1 



SCREEN 

#define 

#define 

#define 

#define 

:fl:def ine 

#define 

#define 

#define 

#define 

#define 

#define 

#define 

#define 

#define 

#define 

#define 

#define 

#define 

Zilog 

mesg (s, d) 
wmesg(stdscr, s, d) 

mvcursor(c, top, bottom) 
wmvcursor(stdscr, c, top, bottom) 

forword(top, bottom) 
wforword(stdscr, top, bottom) 

backword(top, bottom) 
wbackword(stdscr, top, bottom) 

forspace(top, bottom) 
wforspace(stdscr, top, bottom) 

backspace(top, bottom) 
wbackspace(stdscr, top, bottom) 

right(top, bottom) 
wright(stdscr, top, bottom) 

left(top, bottom) 
wleft(stdscr, top, bottom) 

highlight(flag) 
whighlight(stdscr, flag) 

getword (str) 
wgetword{stdscr, str) 

colon () 
wcolon(stdscr) 

help(file) 
whelp{stdscr, file) 

savescrn () 
wsavescrn{stdscr) 

resscrn () 
wresscrn(stdscr) 

scrol f () 
wscrolf {stdscr) 

scrolb () 
wscrolb{stdscr) 

pagefor {) 
wpagefor{stdscr) 

pageback () 
wpageback{stdscr) 

SCREEN 

These global variables are used by the Screen Interface 
Library. If the variable, hilite is set, the library rou
tines assume that the cursored item is in standout mode. The 
variable, scrnflg, is set by the routine wsavescrn whenever 
storage has been allocated for the WINDOW scrn. The user 
program can use this variable in order to clean up any allo
cated storage upon exit. 

int 
int 

hilite; 
scrnflg; 

The variable, scrn, is used by the routines wsavescrn and 
wresscrn for saving and restoring screens. 

B-2 Zilog B-2 



SCREEN Zilog SCREEN 

WINDOW *scrn; 

The following global messages are also defined in the 
library; to use these messages, simply declared the message 
variable as extern (for example, extern char *crmsg). 

char *crmsg = "Type <CR> to continue"; 

char *qmsg = "Type ?<CR> for help"; 

B-3 Zilog B-3 





SCREEN Zi 11.og 

APPENDIX C 
USER GUIDE 

SCREEN 

This appendix is intended to be a user's guide for using the 
Screen Interface Library routines. The following is an out
line of what should be included in a typical screen program 
which outputs a display and allows cursor movement; in this 
example, stdscr is assumed. 

#include <curses.h> 
#include <screen.h> 
#include <signal.h> 

/* top line of the display */ 
:~define TOP 2 

/* name of help file */ 
#define HELPFILE "/usr/lib/screen/helpfile" 

#define SOMELENGTH 14 

/* bottom line of the display */ 
int bottom; 

extern char *qmsg, *crmsg; 

main(argc, argv) 
int argc; 
char **argv; 
{ 

I* 
* parse options 
*I 

/* 

C-1 Zilog C-1 



SCREEN Zilog 

} 

/* 

* set or reset hilite as default 
*I 

I* 
* initialize for the Screen Interface Library 
*/ 

initialize(); 

/* 
* get data for display 
*/ 

getdata(); 

I* 
* handle keyboard input 
*/ 

keyinput (); 

* basic initialize routine 
*I 

initialize() 
{ 

} 

I* 

/* interrupt routine */ 
int done(); 

I* 
* set up terminal for Curses 
*I 

initscr(); 

/* 
* set up interrupt signal 
*/ 

signal(SIGINT, done); 

I* 
* go to cbreak mode 
*I 

goraw(); 

SCREEN 

* this routine merely gets the display information and 
* stores it in some internal buffer 

C-2 Zilog C-2 



SCREEN 

*/ 
getdata() 
{ 

} 

I* 

Zilog SCREEN 

* handle keyboard input (in this routine, assume that 
*only 'right arrow', 
* ':q', and '?<CR>' are the valid commands) 
*I 

keyi nput () 
{ 

char c; 

/* 
* output display 
*/ 

dsp () ; 
move(TOP, 0); 
ref re sh() ; 

I* 
*loop until ':q' is ty~ed 
*/ 

do 
{ 

if (hilit.e) 
highlight(TRUE); 

while (TRUE) 
{ 

c = getkey () ; 
if c = (RIGHT I I c ==COLON II 

break; 
I* 
* if invalid cursor movement, 
* output '?<CR>' message 
*/ 

C ----

if (mvcursor(c, TOP, bottom) -- ERR) 
mesg(qmsg, NULL); 

} 

I* 
* perform command 
*I 

c = cmd(c:); 
} 
wh i 1 e ( c ! = ' q ' ) ; 

C-3 Zilog 

HELP) 

C-3 



SCREEN Zilog 

!* 
* clean up before exit 
*I 

done() ; 
} 

!* 
* output the display 
*! 

dsp {) 
{ 

} 

!* 

!* 
* set up the screen for the display 
*I 

erase(); 
ref re sh () ; 
move(~!, 0); 
printw("Some Title\n\n"); 
ref re sh(); 

/* 
* print out the internal buffer of in£ormation 
* (either printw or addstr can be used) 
*/ 

printw("here\n"); 
printw("there\n"); 
printw("everywhere\n"); 

!* 
* set up bottom of the display 
*I 

bottom = stdscr-> cury - l; 
refresh (); -

SCREEN 

*perform command after 'right arrow', ':'or '?' is typed 
*I 

cmd(c) 
char c; 
{ 

int i, j; 
char str[SOMELENGTH]; 

!* 
* get the cursored item 
*I 
getword(str); 

C-4 Zilog C-4 



SCREEN Zilog 

} 

I* 

/* 
* perform command 
*/ 

switch (c} 
{ 

} 

case RIGHT: 
I* 
* this code performs the command on 

the cursored item 
*/ 

i = stdscr-> cury; 
j = stdscr->-curx; 
mesg("here it is - type <CR>", NULL}; 
while (getkey(} != '\r'}; 

I* 
* redisplay 
*I 

dsp (} ; 
move ( i, j} ; 
break; 

case COLON: 
if (colon(} == 'q'} 

return('q'); 
break; 

case HELP: 
if (help(HELPFILE) == ERR} 

mesg ("Cannot display help file", NULL); 
break; 

return(c}; 

* clean up routine 
*/ 

done () 
{ 

C-5 

signal(SIGINT, done); 
if (hilite) 

highlight(FALSE); 
move(stdscr-> maxy - 1, 0}; 
ref re sh(}; --
if (scrnflg) 

delwin(scrn); 
gonormal(); 

Zilog 

SCREEN 

C-5 



SCREEN 

} 

C-6 

endwin(); 
exit on; 

Zilog SCREEN 

Zilog C-6 



YACC* 

YET ANOTHER COMPILER-COMPILER 

* This information is based on an article 
originally written by Stephen C. Johnson, 

Bell Laboratories. 



YACC Zilog YACC 

ii Zilog ii 



YACC Zilog YACC 

Pref ace 

This document describes the basic process of preparing a 
Yacc specification. Section 1 gives an introduction to 
Yacc, Section 2 describes the preparation of grammar rules, 
Section 3 the preparation of the user-supplied actions asso
ciated with these rules, and Section 4 the preparation of 
lexical analyzers. Section 5 describes the operation of the 
parser. Section 6 discusses various reasons why Yacc may be 
unable to produce a parser from a specification, and how to 
solve them. Section 7 describes a simple mechanism for han
dling operator precedences in arithmetic expressions. Sec
tion 8 discusses error detection and recovery. Section 9 
discusses the operating environment and special features of 
the parsers Yacc produces. Section 10 gives some sugges
tions that should improve the style, Section 11 discusses 
some advanced topics, and Section 12 gives acknowledgments. 

Appendix A gives a summary of the Yacc input syntax and 
Appendix B has a brief example. Appendix C gives an example 
using some of the more advanced features of Yacc. Appendix 
D describes mechanisms and syntax no longer actively sup
ported, but is provided for historical continuity with older 
versions of Yacc. 

iii Zilog iii 



YACC Zilog YACC 

iv Zilog iv 



YACC Zi log 

Table of Contents 

SECTION 1 INTRODUCTION ............................... 

SECTION 2 BASIC SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . 

SECTION 3 ACTIONS . . . . . . . . . . ~ . . . . . . . . . . . . . . . . . . . . . . . . . 

SECTION 4 LEXICAL .ANALYSIS a e e • G e e e • 0 9 9 e e • e a a 9 9 9 9 a 9 9 • • 

SECTION 5 HOW THE PARSER WORKS••••••••••••••••••••••• 

SECTION 6 AMBIGUIT'Y AND CONFLICTS . . . . . . . . . . . . . . . . . . . . 

SECTION 7 PRECEDENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

SECTION 8 ERROR BAiNDLING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

SECTION 9 THE YACC ENVIRONMENT . . . . . . . . . . . . . . . . . . . . . . . 

S.ECTION HJ HINTS FOR PREPARING SPECIFICATIONS ........ 

v 

10 .1. 
10.2. 
10.3. 
10.4. 
10.5. 

Gener a 1 •••••••••••••.••••••••••••••••••••••••• 
Input Styl•e •••••••••.••••••••••••••••••••••••• 
Left Recursion ••••••.••••••••••••••••••••••••• 
Lex i ca 1 Ti •e - Ins •••••••••••••••••••••••••••••• 
Reserved Wt::>rds ••••••••••••••••••••••••••••••• 

Zilog 

YACC 

1-1 

2-1 

3-1 

4-1 

5-1 

6-1 

7-1 

8-1 

9-1 

10-1 

10-1 
10-1 
HJ-1 
10-2 
10-3 

v 



YACC Zilog YACC 

SECTION 11 ADVANCED TOPICS • • • • • • • • • • • • • • • • • .. • • • • • •. • • • 11-1 

11.1. Simulating Error and Accept in Actions ••••••• 11-1 
11.2. Accessing Values in Enclosing Rules ........... 11-1 
11.3. Support for Arbitrary Value Types ............. 11-2 

APPENDIX A YACC INPUT SYNTAX •••••••••••••••.•••••• ,, • • • A-1 

APPENDIX B A SIMPLE EXAMPLE ••••••••••••••••.•••••• ,, • • • 8-1 

APPENDIX C AN ADVANCED EXAMPLE • • • • • • • • • • • • • .• • • • • • .. • • • C-1 

APPENDIX D OLD FEATURES • • • • • • • • • • • • • • • • • • • • .• • • • • • .. • • • D-1 

vi Zilog vi 



YACC Zilog 

SECTION 1 
INTRODUCTION 

YACC 

Yacc is a general tool for imposing structure on the input 
to a computer program. The Yacc user prepares a specifica
tion of the input process. This includes rules describing 
the input structure, code to be invoked when these rules are 
recognized, and a low-level routine to do the basic input. 
Yacc then generates a function to control the input process. 
This function, a parser, calls the user-supplied low-level 
input routine (the lexical analyzer) to pick up the basic 
items (tokens) from the input stream. These tokens are 
organized according to the input structure rules (grammar 
rules). When one of these rules has been recognized, user 
code supplied for this rule (an action) is invoked. Actions 
have the ability to return values and make use of the values 
of other actions. 

Yacc is written in a portable dialect of the C Programming 
Language, and the actions and output subroutine are in C as 
well. Many of the syntactic conventions of Yacc also follow 
c. The input specification is a collection of grammar 
rules. Each rule describes an allowable structure and gives 
it a name. For example, one grammar rule is 

date month name day I t , year 

Here, date, month name, ~, and year represent structures 
of interest in the input process; month name, day, and year 
are defined elsewhe~re. The comma (,) is enclosecr-in single 
quotes to imply that it is to appear in the input. The 
colon and semicolon serve as punctuation in the rule and 
have no significance in controlling the input. Thus, with 
proper definitions, the input 

July 4, 1776 

is matched by this rule. 

An important part of the input process is carried out by the 
lexical analyzer. This user routine reads the input stream, 
recognizing the low-level structures, and communicates these 
tokens to the parser. A structure recognized by the lexical 
analyzer is called a terminal symbol, or token, and the 
structure recognized by the parser is called a nonterminal 
symbol. 

1-1 Zilog 1-1 



YACC Zilog YACC 

There is considerable leeway in deciding whether to recog
nize structures using the lexical analyzer or grammar rules. 
For example, the rules 

month name 
month-name 

month name 

'J' 'a' 'n' 
'F' 'e' 'b' 

'D' 'e' 'c' ; 

can be used in the previous example. The lexical analyzer 
recognizes only individual letters, and month name is a non
terminal symbol. Such low-level rules waste time and space, 
and can complicate the specification beyond Yacc's ability 
to deal with it. Usually, the lexical analyzer recognizes 
the month names, and returns an indication that a month name 
was seen; in this case, month name is a token. 

Literal characters such as , must also be passed through the 
lexical analyzer, and are also considered tokens. 

Specification files are very flexible. It is relatively 
easy to add to the previous example the rule 

date month '/' day '/' year ; 

allowing 

7 I 4 / 1776 

as a synonym for 

July 4, 1776 

In most cases, this new rule can be inserted into a working 
system with minimal effort and little danger of disrupting 
existing input. 

The input being read may not conform to the specifications. 
The resulting input errors are detected early with a left
to-right scan. Thus, not only is the chance of reading and 
computing with bad input data substantially reduced, but the 
bad data is usually found quickly. Error handling, provided 
as part of the input specifications, permits the reentry of 
bad data, or the continuation of the input process after 
skipping over the bad data. 

In some cases, Yacc fails to produce a parser when given a 
set of spe!cifications. For example, the specifications may 
be self-contradictory, or they may require a more powerful 

1-2 Zilog 1-2 



YACC Zilog YACC 

recognition mechanism than that available to Yacc. The 
former cases represent design errors; the latter cases are 
often corrected by making the lexical analyzer more powerful 
or by rewritihg some of the grammar rules. While Yacc can
not handle all possible specifications, its power compares 
favorably with similar systems. The constructions that are 
difficult for Yacc to handle are also frequently difficult 
for human beings to handle. The discipline of formulating 
valid Yacc specifications often reveals errors of design 
early in the program development. 

1-3 Zilog 1-3 





YACC Zilog YACC 

SECTJ;ON 2 
BASIC SPECIFICATIONS 

Names refer to either tokens or nonterminal symbols. Yacc 
requires token names to be declared as such. In addition, 
it is useful to include the lexical analyzer and other pro
grams as part of the specification file. Thus, every 
specification file consists of three sections: the declara
tions, "(grammar) rules," and programs. The sections are 
separated by double percent (%%) marks. (The single percent 
(%) is generally used in Yacc specifications as an escape 
character.) In other words, a full specification file looks 
like 

declarations 
%% 
rules 
%% 
programs 

The declaration section can be empty. If the programs sec
tion is omitted, the second %% mark is omitted. Thus, the 
smallest legal Yacc specification is 

%% 
rules 

Blanks, tabs, and new lines are ignored except that they 
cannot appear in names or multicharacter reserved symbols. 
Comments can appear wherever a name is legal, and are 
enclosed in/* ••• */, as in C language and PL/I. 

The rules section is made up of one or more grammar rules. 
A grammar rule has the form: 

A BODY ; 

A represents a nonterminal name, and BODY 
sequence of zero or more names and literals. 
the semicolon are Yacc punctuation. 

represents a 
The colon and 

Names have arbitrary length, and can be made up of letters, 
dot (.), underscore ( ) , and noninitial digits. Upper and 
lowercase letters are distinct. The names used in the body 
of a grammar rule can represent tokens or nonterminal sym
bols. 

2-1 Zilog 2-1 



YACC Zilog YACC 

A literal consists of a character enclosed in single quotes 
(' '). .~s in C, the backslash (\) is an escape character 
within literals, and all the C escapes are recognized. 

'\n' new line 
'\r' ri:~turn 
'\" single quote (') 
'\\' backslash (\) 
'\t' t~::tb 
'\b' b<:tckspace 
'\f' f<) rm feed 
'\xxx' "xxx" in octal 

The NUL character ('\0' or 0) is never used in grammar 
rules. 

If there are several grammar rules with the same left side, 
the vertical bar Cl) can be used to avoid rewriting the left 
side. In addition, the semicolon at the end of a rule can 
be dropped before a vertical bar. Thus the grammar rules 

A B c D ; 
A E F 
A G ; 

can be givEm to Yacc as 

A B c D 
E F 
G 

; 

It is not necessary that all grammar rules with the same 
left side appear together in the grammar rules section, 
although it makes the input more readable and easier to 
change. 

If a nonterminal symbol matches the empty string, this can 
be ind icatE~d as: 

empty : ; 

Names representing tokens must be declared; this is most 
simply done by writing 

%token namel name2 

in the declarations (Sections 4, 6, and 7). Every name not 
defined in the declarations section is assumed to represent 
a nonterminal symbol. Every nonterminal symbol must appear 
on the left side of at least one rule. 

2-2 Zilog 2-2 



YACC Zilog YACC 

Of all the nonterminal symbols, the start symbol has partic
ular importance because it is recognized by the parser. 
This symbol represents the largest, most general structure 
described by the grammar rules. By default, the start sym
bol is the left side of the first grammar rule in the rules 
section. It is recommended to declare the start symbol 
explicitly in the declarations section using the %start key
word: 

%start symbol 

The end of the input to the parser is signaled by a special 
token called the endmarker. If the tokens up to, but not 
including, the endmarker form a structure that matches the 
start symbol, the parser function returns to its caller 
after the endmarker is seen and accepts the input. If the 
endmarker is seen in any other context, it is an error. 

It is the job of the user-supplied lexical analyzer to 
return the endmarker when appropriate (Section 4). Usually, 
the endmarker represents some I/O status, such as "end-of
file" or "end-of-record." 

2-3 Zilog 2-3 





YACC Zilog 

SECTION 3 
ACTtONS 

YACC 

With each grammar rule, there are associated actions to be 
performed each time the rule is recognized in the input pro
cess. These actions can return values and can obtain the 
values returned by previous actions. The lexical analyzer 
can also return values for tokens. 

An action is an arbitrary C statement and as such can do 
input and output, call subprograms, and alter external vec
tors and variables. An action is specified by one or more 
statements enclosed in braces ({ and }) • For example, 

A '(' B ')' 
{ hello( 1, "abc" ) ; } 

and 

xxx YYY ZZZ 
{ printf("a message\n"); 

flag = 25; } 

are grammar rules with actions. 

To facilitate easy communication between the actions and the 
parser, the action statements are slightly altered. The 
symbol dollar sign ($) is used as a signal to Yacc in this 
context. 

To return a value, the action normally sets the pseudo
variable "$$" to some value. For example, an action that 
does nothing but return the value 1 is 

{ $$ = l; } 

To obtain the values returned by previous actions and the 
lexical analyzer, the action uses the pseudovariables $1, 
$2, ••• , which refer to the values returned by the com
ponents of the right side of ~ rule. Thus, if the rule is 

A B C D ; 

for example, then $2 has the value returned by C, and $3 the 
value returned by D. 

As another example, consider the rule: 

3-1 Zilog 3-1 



YACC Zilog YACC 

ex pr ' ( ' expr ') ' ; 

The value re!turned by this rule is the value of the ~xpr in 
parentheses. This can be indicated by 

ex pr I (I expr I) I { $$ = $2 

By default, the value of a rule is the value of the first 
element in it ($1). Thus, grammar rules of the form 

A B ; 

frequently do not need to have an explicit action. 

In the previous examples, all the actions come at the end of 
their rules. Sometimes it is desirable to get control 
before a rule is fully parsed. Yacc permits an action to be 
written in the middle of a rule as well as at the end. This 
rule returns a value, accessible through the usual mechanism 
by the actions to the right of it. In turn, it can access 
the values returned by the symbols to it~ left. Thus, in 
the rule 

A B 
{ $$ = l; } 

c 
{ x = $2; y = $3; } 

the effect is to set x to 1, and set X to the value returned 
by c. 

Actions that do not terminate a rule are actually handled by 
Yacc by manufacturing a new nonterminal symbol name, and a 
new rule matching this name to the empty string. The inte
rior action is the action triggered by recognizing this 
added rule. Yacc treats the previous example as if it had 
been written: 

$ACT /* empty *I 
{ $$ = l; } 

; 

A B $ACT c 
{ x = $ 2; y = ~? 3; } 

; 

In many applications, output is not done directly by the 
actions; rather, a data structure, such as a parse tree, is 
constructed in memory, and transformations are applied to it 
before output is generated. Parse trees are particularly 

3-2 Zilog 3-2 

} 



YACC Zilog YACC 

easy to construct, given routines to build and maintain the 
tree structure desired. For example, suppose there is a c 
function node, written so that the call 

node( L, nl, n2 ) 

creates a node with label L, and descendants nl and n2, then 
returns the index of the newly created node. The parse tree 
is built by supplying actions such as: 

ex pr ex pr '+' ex pr 
{ $$=node( '+', $1, $3 ); } 

in the specification. 

Other variables can be defined for the actions. Declara
tions and d•finitions can appear in the declarations sec
tion, enclosed in the marks%{ and%}. These declarations 
and definitidns have global scope, so they are known to the 
action statements and the lexical analyzer. For example, 

%{ int variable = 0; %} 

can be placed in the declarations section, making variable 
accessible to all of the actions. The Yacc parser uses only 
names beginning in "yy"; such names must be avoided. 

In these examples, all the values are integers. A discus
sion of other value types is found in Section 11. 

3-3 Zilog 3-3 





YACC Zilog 

SECTION 4 
LEXICAL ANALYSIS 

YACC 

A lexical analyzer must be supplied to read the input stream 
and communicate tokens (with values, if desired) to the 
parser. The lexical analyzer is an integer-valued function 
called yylex. The function returns an integer (the token 
number), representing the kind of token read. If there is a 
value associated with that token, it must be assigned to 
the external variable yylval. 

The parser and the lexical an~lyzer must agree on these 
token numbers for communication between them to take place. 
The numbers are chosen by Yacc or by the user. In either 
case, the "I define" mechanism of C allows the lexical 
analyzer to return these numbers symbolically. For example, 
suppose that the token name DIGIT has been defined in the 
declarations section of the Yacc specification file. The 
relevant portion of the lexical analyzer looks like the fol
lowing code: 

yylex () { 
extern int yylval; 
int c; 

c = getchar(); 

switch ( c ) { 

case '0': 
case 'l': 

case '9': 
yylval = c-'0'; 
return( DIGIT); . 
} 

The intent is to return a token number of DIGIT and a value 
equal to the numerical value of the digit. Provided that 
the lexical analyzer code is placed in the programs section 
of the specification file, the identifier DIGIT is defined 
as the token number associated with the token DIGIT. 

This mechanism leads to clear, easily modified lexical 
analyzers. In the grammar, avoid using any token names that 
are reserved or significant in C or the parser. For exam
ple, the use of token names if or while causes severe 

4-1 Zilog 4-1 



YACC Zilog YACC 

difficulties when the lexical analyzer is compiled. The 
token name error is reserved for error handling and must not 
be used (Section 8). 

In the default situation, the token numbers are chosen by 
Yacc. The default token number for a literal character is 
the numerical value of the character in the local character 
set. Other names are assigned token numbers starting at 
257. 

To assign a token number to a token (including literals), 
follow the first appearance of the token name or literal in 
the declarations section with a nonnegative integer. This 
integer is the token number of the name or literal. Names 
and literals not defined by this mechanism retain their 
default definition. All token numbers must be distinct. 

The endmarker must have token number 0 ~r a negative number. 
This token number cannot be redefined by the user; thus, all 
lexical analyzers must be prepared to return 0 or negative 
as a token number upon reaching the end of their input. 

A very useful tool for constructing lexical analyzers is the 
lex program. These lexical analyzers are designed to work 
in close harmony with Yacc parsers. The specifications for 
these lexical analyzers use regular expressions instead of 
grammar rules. 

4-2 Zilog 4-2 



YACC Zilog YACC 

SECTION 5 
HOW THE PARSER WORKS 

Yacc turns the specification file into a C program that 
parses the input according to the specification given. The 
parser itself is relatively simple, and understanding how it 
works makes treatment of error recovery and ambiguities much 
more comprehensible. 

The parser produced by Yacc consists of a finite state 
machine with a stack. The parser is also capable of reading 
and retaining the next input token, called the lookahead 
token. The current state is always the one on the top of 
the stack. The states of the finite state machine are given 
small integer labels; initially, the machine is in state 0, 
the stack contains only state 0, and no lookahead token has 
been read. 

The machine has only four actions available to it; they are 
called shift, reduce, accept, and error. Movement of the 
parser is done as follows: 

1. Based on its current s,tate, the parser determines 
whether it needs a lookahead token to determine what 
action should be done; if it needs one, and does not 
have one, it calls yylex to obtain the next token. 

2. Using the current state, and the lookahead token if 
needed, the parser determines its next action and car
ries it out. This results in states being pushed onto 
the stack or popped off the stacki and in the lookahead 
token being processed or left alone. 

The shift action is the most common action the parser takes. 
Whenever a shift action is taken, there is always a look
ahead token. For example, in state 56 there is an action: 

IF shift 34 

which means in state 56, if the lookahead token is IF, the 
current state (56} is pushed down on the stack, and state 34 
becomes the current state (on the top of the stack}. The 
lookahead token is cleared. 

The reduce action keeps the stack from growing without 
bounds. Reduce actions are taken when the parser has seen 
the right side of a grammar rule and is prepared to announce 
that it has seen an instance of the rule, replacing the 

5-1 Zilog 5-1 



YACC Zilog YACC 

right side with the left side. It may be necessary to con
sult the lookahead token to decide whether to raduce. This 
is not usually the case, since the default action 
(represented by a .) is often a reduce actiono 

Reduce actions are associated with individual grammar rules. 
Grammar rules are also given small integer numbers, which 
can lead to some confusion. The action 

reduce 18 

refers to grammar rule 18, while the action 

IF shift 34 

refers to state 34. 

Suppose the rule being reduced is 

A : x y z ; 

The reduce action depends on the left symbol (A in this 
case), and the number of symbols on the right side (three in 
this case). To reduce, first pop off the top three states 
from the stack. (The number of states popped equals the 
number of symbols on the right side of the rule.) After pop
ping these states, a state is uncovered that is the state 
the parser was in before beginning to process the rule. 
Using this uncovered state and the symbol on the left side 
of the rule, perform what is in effect a shift of A. A new 
state is obtained, pushed onto the stack, and parsing con
tinues. There are significant differences between the pro
cessing of the left symbol (called a goto action) and an 
ordinary shift of a token. The lookahead token is cleared 
by a shift, and is not affected by a goto. The uncovered 
state contains an entry such as: 

A goto 20 

causing state 20 to be pushed onto the stack and become the 
current state. 

In effect, the reduce action "turns back the clock" in the 
parser, popping the states off the stack td go back to the 
state where the right side of the rule was first seen. The 
parser then behaves as if it had seen the left side at that 
time. If the right side of the rule is empty, no states are 
popped off the stack; the uncovered state is in fact the 
current state. 

5-2 Zilog 5-2 



YACC Zilog YACC 

The reduce action is also important in the treatment of 
user-supplied actions and values. When a rule is reduced, 
the code supplied with the rule is executed before the stack 
is adjusted. In addition to the stack holding the states, 
another stack, running in parallel with it, holds the values 
returned from the lexical analyzer and the actions. When a 
shift takes place, the external variable yylval is copied 
onto the value stack. After the return from the user code, 
the reduction is carried out. When the goto action is done, 
the external variable yyval is copied onto the value stack. 
The pseudovariables $1, $2, etc. refer to the value stack. 

The other two parser actions are conceptually much simpler. 
The accept action indicates that the entire input has been 
seen and that it matches the specification. This action 
appears only when the lookahead token is the endmarker, and 
indicates that the parser has successfully done its job. 
The error action, on the other hand, represents a place 
where the parser can no longer continue parsing according to 
the specification. The input tokens it has seen, together 
with the lookahead token, cannot be followed by anything 
that results in a legal input. The parser reports an error, 
and attempts to recover and resume parsing. The error 
recovery (as opposed to the detection of error) is discussed 
in Section 8. 

Consider the specification 

%token DING DONG DELL 
%% 
rhyme sound place 

sound DING DONG 
; 

place DELL 

When Yacc is invoked with the -v option, a file called 
y.output is produced, with a human-readable description of 
the parser. The y.output file corresponding to this grammar 
(with some statistics stripped off the end) is: 

state 0 

5-3 

$accept _rhyme $end 

DING shift 3 
error 

rhyme goto 1 
sound goto 2 

Zilog 5-3 



YACC Zilog YACC 

state 1 
$accept rhyme $end -
$end accept 

error 

state .. > 

"'· rhyme sound_place 

DELL shift 5 
error 

place goto 4 

state 3 
sound DING DONG 

DONG shift 6 
error 

state 4 
rhyme sound place ( 1) -

reduce 1 

state ~i 

place DELL (3) 

reduce 3 

state 6 
sound DING DONG (2) 

reduce 2 

In addition to the actions for each state, there is a 
description of the parsing rules being processed in each 
state. The character indicates what has been seen and 
what is yet to come in each rule. Suppose the input is 

DING DONG DELL 

It is instructive to follow the steps of the parser while 
processing this input. 

Initially, the current state is state 0. The parser refers 
to the input to select among the actions available in state 
0, so the first token (DING) is read, becoming the lookahead 
token. The action in state 0 on DING is "shift 3," so state 
3 is pushed onto the stack, and the lookahead token is 
cleared. State 3 becomes the current state. The next 

5-4 Zilog 5-4 



YACC Zilog YACC 

token, DONG, is read, becoming the lookahead token. The 
action in state 3 on the token DONG is "shift 6," so state 6 
is pushed onto the stack, and the lookahead is cleared. The 
stack now contains 0, 3, and 6. In state 6, without even 
consulting the lookahead token, the parser reduces by rule 
2~ 

sound DING DONG 

This rule has two symbols on the right side, so two states, 
6 and 3, are popped off the stack; uncovering state 0. Con
sulting the description of state 0, looking for a goto on 
sound, 

sound goto 2 

is obtained; thus, state 2 is pushed onto the stack, becom
ing the current state. 

In state 2, the next token, DELL, must be read. The action 
is "shift 5," so state 5 is pushed onto the stack (which now 
has 0, 2, and 5 on it) and the lookahead token is cleared. 
In state 5, the only action is to reduce by rule 3. This 
has one symbol on the right side, so one state (5) is popped 
off, and state 2 is uncovered. The goto in state 2 on 
£lace, the left side of rule 3, is state 4. Now the stack 
contains 0, 2, and 4. In ~tate 4, the only action is to 
reduce by rule 1. There are two symbols on the right, so 
the top two states are popped off, uncovering state 0 again. 
In state 0, there is a goto on rhyme causing the parser to 
enter state 1. In state 1, the input is read; the endmarker 
is obtained, indicated by "$en~" in the ~.output file. The 
action in state 1 when the endmarker is seen is to accept, 
successfully ending the parse. 

Consider how the parser 
incorrect strings as 
DELL DELL, etc. A few 
simple examples will 
complicated contexts. 

5-5 

works when confronted with such 
DING DONG DONG, DING DONG, DING DONG 

minutes spent with this and other 
be repaid when problems arise in more 

Zilog 5-5 





YACC Zilog 

SECT~ON 6 
AMBIGUITY AND CONFLICTS 

YACC 

A set of grammar rules is ambiguous if there is some input 
string that can be structured in two or more different ways. 
For example, the grammar rule 

ex pr ex pr I - I ex pr 

is a natural way of expressing the fact that one way of 
forming an arithmetic expression is to put two other expres
sions together with a minus sign between them. Unfor
tunately, this grammar rule does not completely specify the 
way that all complex inputs should be structured. For exam
ple, if the input is 

ex pr ex pr ex pr 

the rule allows this input to be structured as either 

ex pr ex pr ex pr 

or as 

ex pr ex pr ex pr 

The first is called left association, and the second is 
called right association. 

Yacc detects such ambiguities when it is attempting to build 
the parser. Consider the problem that confronts the parser 
when it is given an input such as 

ex pr ex pr ex pr 

When the parser has read the second expr, the input that it 
has seen: 

ex pr ex pr 

matches the right side of the grammar rule above. The 
parser could reduce the input by applying this rule. After 
applying the rule, the input is reduced to expr (the left 
side of the rule). The parser then reads the final part of 
the input: 

ex pr 

6-1 Zilog 6-1 



YACC Zilog YACC 

and again reduces. The effect of this is to take the left 
associative interpretation. 

Alternatively, when the parser has seen 

ex pr ex pr 

it defers the immediate application of the rule, and contin
ues reading the input until it had seen 

ex pr ex pr ex pr 

It then applies the rule to the rightmost three symbols, 
reducing them to expr and leaving 

ex pr ex pr 

Now the rule can be reduced once more; the effect is to take 
the right associative interpretation. Thus, having read 

ex pr ex pr 

the parser can do two legal things, a shift or a 
and has no way of deciding between them. This 
shift/reduce conflict. It may also happen that 
has a choice of two legal reductions; this 
reduce/reduce conflict. There are never any 
conflicts. 

re~duction, 
is called a 
the parser 
is called a 
shift/shift 

When there are shift/reduce or reduce/reduce conflicts, Yacc 
still produces a parser. It does this by selecting one of 
the valid steps wherever it has a choice. A rule describing 
which choice to make in a given situation is called a disam
biguating rule. 

Yacc invokes two disambiguating rules by default: 

1. In a shift/reduce conflict, the default is to do the 
shift. 

2. In a reduce/reduce conflict, the default is to reduce 
by the earlier grammar rule in the input sequence. 

Rule 1 implies that reductions are deferred in favor of 
shifts whenever there is a choice. Rule 2 gives rather 
crude control over the behavior of the parser, but 
reduce/reduce conflicts should be avoided. 

Conflicts arise because of mistakes in input or logic, or 
because the grammar rules, while consistent, require a more 
complex parser than Yacc constructs. The use of actions 

6-2 Zilog 6-2 



YACC Zilog YACC 

within rules can also cause c9nflicts if the action must be 
done before the parser can be sure which rule is being 
recognized. In these cases, the application of disambiguat
ing rules is inappropriate, and leads to an incorrect 
parser. For this reason, Yacc always reports the number of 
shift/reduce and reduce/reduce conflicts resolved by Rule 1 
and Rule 2. 

Whenever it is possible to apply disambiguating rules to 
produce a correct parser, it is also possible to rewrite the 
grammar rules so that the same inputs are read but there are 
no conflicts. For this reason, most previous parser genera
tors have considered conflicts to be fatal errors. This 
rewriting is somewhat unnatural, and produces slower 
parsers; thus, Yacc produces parsers even in the presence of 
conflicts. 

As an example of the power of disambiguating rules, consider 
a fragment from a programming language involving an "if
then-else" construction: 

stat 

; 

IF ' (' 
IF ' ( ' 

cond 
cond 

' ) ' 
' ) ' 

stat 
stat ELSE stat 

In these rules, IF and ELSE are tokens, cond is a nontermi
nal symbol descrlbing conditional (logic~expressions, and 
stat is a nonterminal symbol describing statements. The 
first rule is called the simple-if rule, and the second is 
called the if-else rule. 

These two rules form an ambiguous construction, since input 
of the form 

IF Cl IF C2 Sl ELSE S2 

can be structured according to these rules in two ways: 

IF Cl ) { 
IF ( C2 Sl 
} 

ELSE S2 

or 

IF Cl ) { 
IF ( C2 Sl 
ELSE 82 
} 

6-3 Zilog 6-3 



YACC Zilog YACC 

The second interpretation is the one given in most program
ming languages having this construct. Each ELSE is associ
ated with the last preceding "un-ELSE'd" IF. ·--rnth:ls exam
ple, consider the situ.::ition where the parser has seErn 

IF Cl IF C2 Sl 

and is looking at the ELSE. It can immediately reduce by 
the simple-·i f rule to get 

IF Cl stat 

and then read the remaining input, 

ELSE S2 

and reduce 

IF Cl stat ELSE S2 

by the if-else rule. This leads to the first of groupings 
of the input. 

On the other hand, the ELSE can be shifted, S2 read, and 
then the rlght hand portion of 

IF Cl IF C2 Sl ELSE S2 

is reduced by the if-else rule to get 

IF Cl stat 

which is reduced by the simple-if rule. This leads to the 
second of the groupings of the input, which is usually 
desired. 

The parser can do two valid things--there is a shift/reduce 
conflict. The application of Disambiguating Rule 1 tells 
the parser to shift in this case, which leads to the desired 
grouping .. 

This shift/reduce conflict arises only when there is a par
ticular current input symbol, ELSE, and particular inputs 
already seen, such as 

IF Cl IF C2 Sl 

There can be many conflicts, each associated with an input 
symbol and a set of previously read inputs. The previously 
read inputs are characterized by the state of the parser. 

6-4 Zilog 6-4 



YACC Zilog YACC 

The conflict messages of Yacc are best understood by examin
ing the verbose (-v) option output file. For example, the 
output corresponding to the conflict state is: 

23: shift/reduce conflict (shift 45, reduce 18) on ELSE 

state 23 

stat 
stat 

ELSE 

IF ( cond 
IF ( cond 

shift 45 
reduce 18 

stat (18) 
stat-ELSE stat 

The first line describes the conflict, g1v1ng the state and 
the input symbol. The ordinary state description follows, 
giving the grammar rules active in the state, and the parser 
actions. Recall that the underline marks the portion of the 
grammar rules that has been seen. Here, in· state 23, the 
parser has seen input corresponding to 

IF cond stat 

and the two grammar rules shown are active at this time. 
The parser can do two possible things. If the input symbol 
is ELSE, it shifts into state 45. State 45 has as part of 
its description the line 

stat IF cond stat ELSE stat 

since the ELSE has been shifted in this state. Back in 
state 23, the alternative action (described by .) is to be 
done if the input symbol is not mentioned explicitly in the 
above actions. In this case, if the input symbol is not 
ELSE, the parser reduces by Grammar Rule 18: 

stat IF ' ( ' co nd ' ) ' stat 

The numbers following shift commands refer to other states, 
while the numbers following reduce commands refer to grammar 
rule numbers. In the ~.output file, the rule numbers are 
printed after those rules that can be reduced. In most 
states, there is at most one reduce action possible in the 
state, and this is the default command. The user who 
encounters unexpected shift/reduce conflicts should look at 
the verbose output to decide whether the default actions are 
appropriate. 

6-5 Zilog 6-5 





YACC Zilog 

SECTipN 1 
PRECEDENCE 

YACC 

The rules given for resolving conflicts are not sufficient 
in the parsing of arithmetic expressions. Most of the com
monly used constructions for arithmetic expressions can be 
naturally described by the notion of precedence levels for 
operators, together with information about left or right 
associativity. Ambiguous grammars with appropriate disambi
guating rules can create parsers that. are faster and easier 
to write than parsers constructed from unambiguous grammars. 
Writing grammar rul 1es of the form 

ex pr expr OP expr 

and 

ex pr UNARY expr 

for all binary and unary operators creates a very ambiguous 
grammar with many parsing conflicts. The precedence, or 
binding strength, of all the operators, and the associa
tivity of the binary operators must be specified as disambi
guating rules. This information is sufficient to allow Yacc 
to resolve the parsing conflicts in accordance with these 
rules and to construct a parser that recognizes the desired 
precedence 1 eve 1 s and assoc i at.iv e proper t i es • 

The precedence levels and associative properties are 
attached to tokens in the declarations section. This is 
done by a series of lines beginning with a Yacc keyword 
(%left, %right, or %nonassoc) followed by a list of tokens. 
All the tokens on the same line are assumed to have the same 
precedence level and associativity. The lines are listed in 
order of increasing precedence or binding strength. Thus, 
the statements 

%left '+' '-' 
%left '*' '/' 

describe the precedence level and associative properties of 
the four arithmetic operators. Plus and minus are left 
associative, and have lower precedence than star and slash, 
which are also left associative. The keyword %right is used 
to describe right associative operators, and the keyword 
%nonassoc is used to describe operators that cannot associ
ate with themselves. 

7-1 Zilog 7-1 



YACC Zilog YACC 

As an example of the behavior of these declarations, the 
description 

%right '=' 
%left '+' '-' 
%left '*' '/' 

%% 

ex pr 

; 

ex pr 
ex pr 
ex pr 
ex pr 
ex pr 
NAME 

t =I 
I+ I 

I_ I 

I * I 

I I' 

is used to structure the input 

a b = c*d e 

as follows:: 

ex pr 
ex pr 
ex pr 
ex pr 
ex pr 

f *g 

a= { b = { {(c*d)-e) - (f*g))) 

When this mechanism is used, unary operators must be given a 
precedence level. Sometimes a unary operator and a binary 
operator have the same symbolic representation, but dif
ferent precedences. An example is unary and binary minus 
(-);unary minus is given the same strength as multiplica
tion, or even higher, while binary minus has a lower 
strength than multiplication. The keyword, %prec, changes 
the precedence level associated with a particular grammar 
rule. %prec appears immediately after the body of the gram
mar rule, before the action or closing semicolon, and is 
followed by a token name or literal. It causes the pre
cedence of the grammar rule to become that of the following 
token name or literal. For example, to make unary minus 
have the same precedence as multiplication, use the follow
ing statements: 

%left t +I I_ I 

%left I * I 'I' 
%% 
ex pr ex pr I+ I ex pr 

ex pr I_ I ex pr 
ex pr ' * ' ex pr 
ex pr 'I' ex pr 
' - ' ex pr %prec ' * ' 

NAME 

7-2 Zilog 7-2 



YACC Zilog YACC 

A token declared by %left, %right, and %nonassoc need not 
be, but can be, declared by %token as well. 

The precedence level and associativity are used by Yacc to 
resolve parsing conflicts and to give rise to disambiguating 
rules. Formally, the rules work as follows: 

1. The precedence level and associativity properties are 
recorded for those tokens and literals that have them. 

2. Some grammar rules have no precedence and associativity 
associated with them. In this is the case, the pre
cedence and associativity of the last token or literal 
in the body of the rule are associated with the grammar 
rule by default. If the %prec construction is used, it 
overrides this default. 

3. When there is a reduce/reduce conflict or a 
shift/reduce conflict, and either the input symbol or 
the grammar rule has no precedence level and associa
tivity, the two disambiguating rules given the begin
ning of the section are used, and the conflicts are 
reported. 

4. If there is a shift/reduce conflict, and both the gram
mar rule and the input character have precedence level 
and associativity connected to them, the conflict is 
resolved in favor of the action (shift or reduce) 
related to the higher precedence level. If the pre
cedence levels are the same, then the associativity is 
used; left associative implies reduce, right associa
tive implies shift, and nonassociating implies error. 

Conflicts resolved by precedence levels are not counted in 
the number of shift/reduce and reduce/reduce conflicts 
reported by Yacc. This means that mistakes in the specifi
cation of precedences can disguise errors in the input gram
mar; it is a good idea to be sparing with precedences, and 
use them in "cookbook" fash.ion until some experience has 
been gained. Also, the y.output file is very useful in 
deciding whether the parser is actually doing what was 
intended. 

7-3 Zilog 7-3 





YACC Zilog 

SECTJON 8 
ERROR HANDLING 

YACC 

Error handling is an extremely difficult area, and many of 
the problems are semantic ones. When an error is found, for 
example, it is often necessary to reclaim parse tree 
storage, delete or alter symbol table entries, and, typi
cally, set switches to avoid generating any further output. 

It is seldom acceptable to stop all processing when an error 
is found; it is more useful to continue scanning the input 
to find further syntax errors. This leads to the problem of 
getting the parser restarted after an error. A general 
class of algorithms to do thi• involves discarding a number 
of tokens from the input string and attempting to adjust the 
parser so that input can continue. 

To allow some control over this process, Yacc provides a 
simple, but reasonably general feature: the token name 
"error." This name is reserved for error handling and can he 
used in grammar rules. It suggests places where errors are 
expected and recovery can take place. The parser pops the 
stack until it enters a state where the token "error" is 
legal. It then behaves as if 'the token "error" were the 
current lookahead token, and performs the action encoun
tered. The lookahead token is then reset to the token that 
caused the erroro If no special error rules have been 
specified, the processing halts when an error is detected. 

In order to prevent a cascade of error messages, the parser, 
after detecting an error, remains in error state until three 
tokens have been successfully read and shifted. If an error 
is detected when the parser is already in error state, no 
message is given, and the input token is deleted. 

As an example, a rule of the form 

stat error 

means that on a syntax error, the parser skips over the 
statement in which the error was seen. More precisely, the 
parser scans ahead, looking for three tokens that legally 
follow a statement, and st~rts processing at the first of 
these. If the beginnings of statements are not sufficiently 
distinctive, it may make a false start in the middle of a 
statement and report a second error where there is no error. 

8-1 Zilog 8-1 



YACC Zilog YACC 

Actions can be used with these special error rules. These 
actions attempt to do such things as reinitialize tables and 
reclaim symbol table space. 

Such error rules are very general but difficult to control. 
An easier error form is: 

stat error 

When there is an error, the parser skips over the statement, 
but does so by skipping to the next ; character. All tokens 
after the error and before the next ; cannot be shifted, and 
they are discarded. 

Another form of error rule arises in interactive applica
tions, whare it may be desirable to permit a line to be 
reentered after an error. A possible error rule is 

input error '\n' 
{ printf("Reenter last line:"); 

{ $$ = $4; 
} input 

} 

The problem with this approach is that the parser must 
correctly process three input tokens before it correctly 
resynchronizes after the error. If the reentered line con
tains an error in the first two tokens, the parser deletes 
the offending tokens and gives no message; this is unaccept
able. For this reason, there is a mechanism that forces the 
parser to function as though full error recovery has taken 
place. The statement 

yyerrok ; 

in an action resets the parser to its normal mode. The last 
example is better written 

input error '\n' 
{ yyerrok; 

printf ( "Reenter last line: " 
input 

{ $$ = $4; } 
; 

The token seen immediately after the "error" symbol is the 
input token at which the error was discovered. Sometimes 
this is inappropriate; for example, an error recovery action 
might take upon itself the job of finding the correct place 
to resume input. In this case, the previous lookahead token 
must be cleared. The statement 

yyclearin ; 

8-2 Zilog 8-2 



YACC Zilog YACC 

in an action produces this effect. For example, suppose the 
action after error is to call some sophisticated resynchron
ization routine, supplied by the user, that attempts to 
advance the input to the beginning of the next valid state
ment. After this routine is called, the next token returned 
by yylex is, presumably, the first token in a legai state
ment. The old, illegal token must be discarded, and the 
error state reset. This is done by a rule like 

stat error 

; 

{ resynch(); 
yyerrok ; 
yyclearin ; } 

These mechanisms allow for a simple, fairly effective 
recovery of the parser from many errors. The error actions 
required by other portions of the program can also be con
trolled. 

8-3 Zilog 8-3 





YACC Zilog YACC 

SECTION 9 
THE YACC ENVIRONMENT 

When the user inputs a specification to Yacc, the output is 
a file of C programs called y.tab.c on most systems (the 
names can differ from installation to installation). The 
integer-valued function produced by Yacc is called yyparse. 
When it is called, it in turn tepeatedly calls yylex, the 
lexical analyzer supplied by the user (Section 4) to obtain 
input tokens. Eventually, an ~rror is detected and, if no 
error recovery is possible, yyparse returns the value 1. 
Otherwise, the lexical analyzer returns the endmarker token, 
and yyparse returns the value 0. 

A certain amount of environment for this parser must be pro
vided to obtain a working program. For example, as with 
every C program, a program called main must be defined, 
which eventually calls yyparse. In addition, a routine 
called yyerror prints a message when a syntax error is 
detected. 

These two routines must be supplied by the user. To ease 
the initial effort of using Yacc, a library has been pro
vided with default versions of 'main and yyerror. The name 
of this library is system dependent; on many systems the 
library is accessed by a -ly argument to the loader. The 
source for these default programs is given here: 

and 

main() { 
return ( yyparse () ) ; 
} 

# include <stdio.h> 

yyerror(s) char *s; { 
fprintf( stderr, "%s\n", s ); 
} 

The argument to yyerror is a string containing an error mes
sage, usually the string "syntax error." The program must 
keep track of the input line number and print it along with 
the message when a syntax error is detected. The external 
integer variable yychar contains the lookahead token number 
at the time the error was det~cted; this gives better diag
nostics. Since the main program is probably supplied by the 
user (to read arguments, etc.), the Yacc library is useful 

9-1 Zilog 9-1 



YACC Zilog YACC 

only in small projects or in the earliest stages of larger 
ones. 

The external integer variable yydebug is normally set to 0. 
If it is set to a nonzero value, the parser outputs a ver
bose description of itti actions, including a discussion of 
which input symbols have been read and what the parser 
actions are. 

9-2 Zilog 9-2 



YACC Zilog YACC 

SECTIQN UJ 
HINTS F10R PREPARING SPECIFICATIONS 

10.1. General 

This section contains miscellaneous hints on preparing eff i
cient, easy to change, and clear specifications. The indi
vidual subsections are independent. 

18.2. Input Style 

It is difficult to provide rules with substantial actions 
and still have a readable specification file. The following 
are some hints: 

1. Use all capital letters for token names, all lowercase 
letters for nonterminal names. This helps isolate the 
source of problems. 

2. Put grammar rules and actions on.separate lines. This 
allows either to be changed without an automatic need 
to change the other. 

3. Put together all rules with the same left side. Put 
the left side in only once, and let all following rules 
begin with a vertical bar. 

4. Put a semicolon only after the last rule with a given 
left side, and put the semicolon on a separate line. 
This allows new rules to be easily added. 

Se Indent rule bodies by two tab stops and action bodies 
by three tab stops. 

The example in Appendix B is written following this style, 
as are the examples in the text of this document. The user 
must decide how to make the rules visible through the bulk 
of action code. 

10.3. Left Recursion 

The algorithm used by the Yacc parser encourages "left 
recursive" grammar rules of the form 

name name rest of rule ; 

10-1 Zilog 10-1 



YACC Zilog 

These rules frequently arise when 
sequences and lists are written: 

list 

and 

seq 

item 
list 

item 

I I 

' 

seq item 

item 

YACC 

specifications of 

In each case, the first rule is reduced for the first item 
only, the second rule is reduced for the second and all 
succeeding items. 

With right recursive rules such as 

seq item 
item seq 

i 

the parser is a bit bigger, and the items are seen and 
reduced from right to left. An internal stack in the parser 
is in danger of overflowing if a very long sequence is read. 
Thus, left recursion must be used. 

It is worth considering whether a sequence with zero ele
ments has any meaning, and if so, consider writing the 
sequence specification with an empty rule: 

seq 

i 

/* empty */ 
seq item 

Once again, the first rule is always reduced once before the 
first item is read, then the second rule is reduced once for 
each item read. Permitting empty sequences often leads to 
increased generality. However, conflicts arise if Yacc is 
asked to decide which empty sequence it has seen when it has 
not seen enough to know. 

10.4. Lexical Tie-Ins 

Some lexical decisions depend on context. For example, the 
lexical analyzer deletes blanks normally, but not within 
quoted strings. Names can be entered in a symbol table in 
declarations, but not in expressions. 

10-2 Zilog 10-2 



YACC Zilog YACC 

One way of handling this situation is to create a global 
flag that is examined by the lexical analyzer and set by 
actions. For example, suppose a program consists of zero or 
more declarations followed by zero or more statements. 

Consider the statements: 

%{ 

%} 

%% 

prog 

decls 

stats 

int dflag; 

other declarations . . . 

decls stats 
; 

/* empty */ 
{ dflag = 1; } 

decls declaration 
i 

/* empty */ 
{ dflag = 0; } 

stats statement 
i 

other rules ••• 

The flag dflag is now 0 when reading statements, and 1 when 
reading declarations, except for the first token in the 
first statement. The parser must see this token before it 
can tell that the declaration section has ended and the 
statements have begun. In many cases; this single token 
exception does not affect the lexical scan. 

10.5. Reserved Words 

Some programming languages permit the use of words normally 
reserved as label or variable names, provided that such use 
does not conflict with the legal use of these names in the 
programming language. This is extremely hard to do in the 
framework of Yacc; it is difficult to pass information to 
the lexical analyzer telling it "this instance of 'if' is a 
keyword, and that instance is a variable." Therefore, do not 
use keywords. 

10-3 Zilog 10-3 





YACC Zilog 

SECTION 11 
ADVANCED TOPICS 

YACC 

11.1. Simulating Error and Accept in Actions 

The parsing actions of error and accept are simulated in an 
action by use of macros YYACCEPT and YYERROR. YYACCEPT 
causes yyparse to return the value 0. YYERROR causes the 
parser to behave as if the current input symbol had been a 
syntax error; yyerror is called, and error recovery takes 
place. These mechanisms are used to simulate parsers with 
multiple endmarker or context-sensitive syntax checking. 

11.2. Accessing Values in Enclosing Rules 

An action can refer to values returned by actions to the 
left of the current rule. The mechanism is the same as with 
ordinary actions: a dollar sign followed by a digit, but in 
this case the digit can be zero or negative. Consider the 
commands 

sent adj noun 
{ 

; 

adj THE 
YOUNG { . . . 

; 

noun DOG 
{ 

CRONE 
{ 

; 

verb adj noun 
look at the sentence 

{ 
$$ = 

$$ = THE; 
YOUNG; } 

$$ = DOG; } 

if( $0 ==YOUNG){ 

} 

} 

printf( "what?\n" ); 
} 

$$ = CRONE; 
} 

In the action following the word CRONE, a check is made that 
the preceding token shifted was not YOUNG. This is only 
possible when a greatt deal is known about what might precede 
the symbol ~ in the input. The mechanism saves a great 
deal of trouble, especially when a few combinations are 
excluded from an otherwise regular structure. 

11-1 Zilog 11-1 



YACC Zilog YACC 

11.3. Supp1ort for Arbitrary Value Types 

By default, the values returned by actions and the lexical 
analyzer are integers. Yacc also supports values of other 
types, including structures. In addition, Yacc keeps track 
of the types, and inserts appropriate union member names so 
that the resulting parser is strictly type checked. The 
Yacc value stack is declared to be a union of the various 
types of values desired, and union member names are associ
ated with each token and nonterminal symbol having a value. 
When the value is referenced through a $$ or $n construc
tion, Yacc automatically inserts the appropriate union name 
so that no unwanted conversions take place. In addition, 
type-checking commands such as Lint are more silent. 

There are three mechanisms to provide for this typing. 
First, there is a way of defining the union; this must be 
done by the user since other programs (notably the lexical 
analyzer) must be informed of the union member names. 
Second, there is a way of associating a union member name 
with tokens and nonterminals. Finally, there is a mechanism 
for describing the type of those few values where Yacc can
not easily determine the type. 

To declare the union, the following lines must be included 
in the declaration section: 

%union { 
body of union 
} 

... 

This declares the Yacc value stack and the external vari
ables yylval and yyval to have type equal to this union. If 
Yacc was invoked with the -d option, the uni-0n declaration 
is copied onto the y.tab.h file. Alternatively, the union 
can be declared in a header file, and a typedef can be used 
to define the variable YYSTYPE to represent this union. 
Thus, the header file can also contain: 

typedef union { 
body of union 
} YYSTYPE; 

The header file must be included in the declarations section 
by use of %{ and %}. 

Once YYSTYPE is defined, the union member names must be 
associated with the various terminal and nonterminal names. 
The construction 

< name > 

11-2 Zilog 11-2 



YACC Zilog YACC 

indicates a union member name. If this follows one of the 
keywords %token, %left, %right, or %nonassoc, the union 
member name is associated with the tokens listed. Thus, 
entering 

%left <optype> '+' '-' 

causes any reference to values returned by these two 
to be tagged with the union member name optype. 
keyword, %type, is used similarly to associate union 
names with nonterminals, as with 

%type <nodetype> expr stat 

tokens 
Another 

member 

There are several cases where these mechanisms are insuffi
cient. If there is an action within a rule, the value 
returned by this action has no "a priori" type. Similarly, 
reference to left context values (such as $0 in the previous 
subsection) leaves Yacc with no way of knowing the type. In 
this case, a type can be imposed on the reference by insert
ing a union member name between < and >, immediately after 
the first $. An example of this usage is 

rule aaa { $<intval>$ = 3; } bbb 
{ fun( $<intval>2, $<other>0 ); } 

A sample specification is given in Appendix c. The facili
ties in this subsection are not triggered until they are 
used: in particular, the use of %type turns on these mechan
isms. When they are used, there is a fairly strict level of 
checking. For example, use of $n or $$ to refer to some
thing with no defined type is diagnosed. If these facili
ties are not triggered, the Yacc value stack is used to hold 
int's. 

11-3 Zilog 11-3 





Y.~cc z i.log 

APPENPIX A 
YACC INPUT SYNTAX 

YACC 

This Appendix has a description of the Yacc input syntax as 
a Yacc specification. Such items as context dependencies 
are not considered. The Yacc input specification language 
is most naturally specified as an LR grammar; the cumbersome 
part comes when an identifier is seen in a rule, immediately 
following an action. If this identifier is followed by a 
colon, it is the start of the next rule; otherwise, it is a 
continuation of the current rule that has an action embedded 
in it. As implemented, the lexical analyzer looks ahead 
after seeing an identifier and determines whether the next 
token is a colon. If so, it returns the token C IDENTIFIER; 
otherwise, it returns IDENTIFigR. Literals (quo~ed strings} 
are also returned as IDENTIFIERS, but never as part of 
C IDENTIFIERS. 

A-1 

/* grammar for the input to Yacc */ 

/* basic entities */ 
%token IDENTIFIER 

/* includes identifiers and literals */ 
%token C IDENTIFIER 

f'i identifier (but not literal} */ 
/* followed by colon */ 

%token NUMBER 
!* [0-9]+ */ 

!* rE~served words */ 
/* %type => TYPE, %left => LEFT, etc. 

%token LEFT RIGHT NON ASSOC TOKEN PREC TYPE START 

%token MARK I* the %% mark */ 
%token LC URL I* the %{ mark *I 
%token RC URL I* the %} mark *I 

*/ 

UNION 

I* asci.i character literals stand for themselves 

%start spec 

%% 

spec defs MARK rules tail 
; 

tail MARK {In this action, eat up the 

Zilog A-1 

*I 



YACC 

defs 

def 

rword 

tag 

nlist 

nm no 

rules 

rule 

rbody 

A-2 

i 

; 

; 

Zilog YACC 

rest of the file} 

/* empty: the second MARK is optional */ 

/ 1 empty */ 
def s def 

START 
UNION 
LC URL 
ndef s 

IDENTIFIER 
{ Copy union definition to output } 
{ Copy C code to output file } RCURL 
rword tag nlist 

TOKEN 
LEFT 
RIGHT 
NONASSOC 
TYPE 

/* empty: union tag is optional */ 
'<' IDENTIFIER '>' 

nm no 
nlist 
nlist 

nmno 
I I , 

IDENTIFIER 

nm no 

/* NOTE: literal illegal with %type */ 
IDENTIFIER NUMBER 
/* NOTE: illegal with %type */ 

/* rules section */ 

; 

C IDENTIFIER 
rules rule 

C IDENTIFIER 
'T• rbody 

rbody 

rbody 
prec 

/* empty */ 
rbody IDENTIFIER 
rbody act 

Zilog 

prec 

prec 

A-2 



YACC Zilog YACC 

act I { I { ~ action, translate $$, etc. } I } I 

; 

prec /* empty *I 
PREC IDEN'TIFIER 
PREC IDEN'TIFI ER act 
prec I • I 

I 

; 

A·-3 Zilog A-3 





YACC Zilog YACC 

APPENDIX B 
A SIMPLE EXAMPLE 

This example gives the complete Yacc specification for a 
small desk calculator. The desk calculator has 26 regis
ters, labeled "a" through "z," and accepts arithmetic 
expressions made up of the operators +, -, *, /, % (mod 
operator), & (bitwise and), I (bitwise or), and assignment. 
If an expression at the top level is an assignment, the 
value is not printed; otherwise it is. As in the C 
language, an integer that begins with 0 (zero) is assumed to 
be octal; otherwise, it is assumed to be decimal. 

As an example of a Yacc specification, the desk calculator 
does a reasonable job of showing how precedences and ambi
guities are used, and of demonstrating simple error 
recovery. The major oversimplifications are that the lexi
cal analysis phase is much sim~ler than for most applica
tions, and the output is produced immediately, line by line. 
The way that decimal and octal integers are read in by the 
grammar rules is primitive; this job is better done by the 
lexical analyzer. 

B-1 

%{ 
# include 
# include 

<stdio.h> 
<ctype.h> 

int regs[26]; 
int base; 

%} 

%start list 

%token DIGIT LETTER 

%left 
%left 
%left 
%left 
%left 

' I ' 
' & ' '+' ,_, 
'*' '/' '%' 
UMIN US 
/* supplies precedence for unary 

%% /* beginning of rules section */ 

list /* empty 
list stat 
list error 

*I 
'\n' 
'\n' 

Zilog 

minus *I 

B-1 



YACC Zilog YACC 

{ yyerrok; } 

i 

stat ex pr 
{ printf ( "% d\n" , $1 ) ; } 

LETTER I= I ex pr 
{ regs [$1] = $3; } 

; 

ex pr I ( I ex pr I ) I 

{ $$ = $2; } 
ex pr I+ I ex pr 

{ $$ = $1 + $3; } 
ex pr I - I ex pr 

{ $$ = $1 $ 3; } 
ex pr I * I ex pr 

{ $$ = $1 * $3; } 
ex pr 'I I ex pr 

{ $$ = $1 I $3; } 
ex pr I % I ex pr 

{ $$ = $1 % $3; } 
ex pr I & I ex pr 

{ $$ = $1 & $3; } 
ex pr I I I ex pr 

{ $$ = $1 I $ 3; } 
I_ I ex pr %prec UMINUS 

{ $$ = $2; l 
LETTER 

{ $$ = regs[$1] ;· } 
number 

; 

number DIGIT 
{ $$ = $1; base = ($1==0) ? 8 10; } 

I number DIGIT 
{ $$ = base * $1 + $2; } 

; 

%% /* start of programs */ 

yylex () { I* lexical analysis routine *I 
I* returns LETTER for a lower case letter */ 
I* yylval = 0 through 25 *I 
/* return DIGIT for a digit */ 
!* yylval = 0 through 9 */ 
/* all other characters */ 
!* are returned immediately */ 

int c; 

while( (c=getchar ()) -- I I ) { 1~k skip blanks *I } 

B-2 Zilog B-2 



YACC Zilog YACC 

I* c :is now nonblank */ 

if ( islower( c { 
yylval = c 'a' ; 
return LETTER ) ; 
} 

if ( isdigit( c { 
yylval = c ' 0 ' ; 
return( DIGIT ) ; 
} 

return( c ) ; 
} 

B-3 Zilog B-3 





YACC Zilog YACC 

APPENDIX C 
AN ADVANCED EXAMPLE 

This Appendix gives an example of a grammar using some of 
the advanced features discussed in Section 11. The desk 
calculator example in Appendix B is modified to provide a 
desk calculator that does floating point interval arith
metic. The calculator understands floating point constants, 
the arithmetic operations +, , *, /, unary -, and = 
(assignment), and has 26 floating point variables, "a" 
through "z." Moreover, it also understands intervals, writ
ten as 

( x , y ) 

where x is less than or equal to y. There are 26 interval 
valued variables "A" through "Z" that can also be used. The 
usage is similar to that in Appendix B; assignments return 
no value and print nothing, while expressions print the 
floating or interval value. 

This example explores a number of interesting features of 
Yacc and c. Intervals are represented by a structure con
sisting of the left and right endpoint values, stored as 
doubles. This structure is given a type name, INTERVAL, by 
using typedef. The Yacc value stack can also contain float
ing point scalars and integers (used to index into the 
arrays holding the variable values). This entire strategy 
depends strongly on being able to assign structures and 
unions in c. In fact, many of the actions call functions 
that return structures. 

Observe the use of YYERROR to handle two error conditions: 
division by an interval containing zero, and an interval 
presented in the wrong order. In effect, the error recovery 
mechanism of Yacc i9nores the rest of the offending line. 

In addition to mixing types on the value stack, this grammar 
also demonstrates an interesting use of syntax to keep track 
of the type (scalar or interval) of intermediate expres
sions. A scalar can be automatically promoted to an inter
val if the context demands an interval value. This causes a 
large number of conflicts when the grammar is run through 
Yacc: 18 Shift/Reduce and 26 Reduce/Reduce. The problem can 
be seen by looking at the two input lines: 

2.5 + ( 3.5 - 4. ) 

C-1 Zilog C-1 



YACC Zilog YACC 

and 

2.5 + ( 3.5 , 4. ) 

The 2.5 is used in an interval valued expression in the 
second example, but this fact is not known until the , is 
read; by this time, 2.5 is finished, and the parser cannot 
go back. More generally, it might be necessary to look 
ahead an arbitrary number of tokens to decide whether to 
convert a scalar to an interval. This problem is evaded by 
having two rules for each binary interval valued operator: 
one when the left operand is a scalar, and one when the left 
operand is an interval. In the second case, the right 
operand must be an interval, so the conversion is applied 
automatically. Despite this evasion, there are still many 
cases where the conversion can be applied or not, leading to 
conflicts. They are resolved by listing the rules that 
yield scalars first in the specification file; in this way, 
the conflicts are resolved in the direction of keeping 
scalar valued expressions scalar valued until they are 
forced to become intervals. 

The way of handling multiple types is very instructive, but 
not very general. If there are many kinds of expression 
types instead of just two, the number of ru!cs needed 
increase dramatically, and the conflicts even more dramati
cally. Thus, while this example is instructive, it is 
better practice in a normal programming language environment 
to keep the type information as part of the value, and not 
as part of the grammar. 

The only unusual feature in lexical analysis is the treat
ment of floating point constants. The C library routine 
atof is used to do the actual conversion from a character 
string to a double-precision value. If the lexical analyzer 
detects an error, it responds by returning a token that is 
illegal in the grammar, provoking a syntax error in the 
parser, and error recovery. 

C-2 

%{ 

# 
# 

include 
include 

<stdio.h> 
<ctype.h> 

typedef struct interval 
double lo, hi; 
} INTERVAL; 

INTERVP!.L vmul () , vd iv() ; 

double atof (); 

{ 

Zilog C-2 



YACC 

C-3 

Zi log 

double dreg[ 26 ]; 
INTERVAL vreg[ 26 ]; 

%} 

%start 

%union 

%token 
I* 

lines 

{ 
int ival; 
double dval; 
INTERVAL vval; 
} 

<ival> DREG VREG 
indices into dreg, vreg arrays 

YACC 

*/ 

%token <dval> CONST /* floating point constant */ 

%type <dval> dexp /* expression */ 

%type <vval> vexp /* interval expression */ 

%left 
%left 
%left 

%% 

lines 

line 

dexp 

/* precedence information about the operators */ 

'+' ,_, 
'*' '/' 
UMINUS 

; 

; 

/* precedence for unary minus */ 

/* empty */ 
lines line 

dexp '\n' 
{ printf ( "%15.Sf\n", $1 ) ; 

vexp '\n' 
{ printf ( "(%15.Sf, %15.Sf 

$1.lo, $1.hi); } 
DREG I: I dexp '\n' 

{ dreg [$1] = $3; } 
VREG I= I vexp '\n' 

{ vreg[$1] = $3; } 
error '\n' 

{ yyerrok; } 

CONST 
DREG 

{ $$ = dreg[$1]; } 
dexp I+ I dexp 

Zilog 

} 

) \n II I 

C-3 



YACC Zilog YACC 

{ $$ = $1 + $ 3; } 
dexp I - I dexp 

{ $$ = $1 $3; } 
dexp I* I dexp 

{ $$ = $1 * $3; } 
dexp I/' dexp 

{ $$ = $1 I $3; } 
I_ I dexp %prec UMINUS 

{ $$ = - $2; } 
f ( I dexp I ) f 

{ $$ = $2; } 
; 

vexp dexp 
{ $$.hi = $$.lo = $1; } 

' ( ' dexp I ' dexp f ) I 
I 

{ 
$$.lo = $2; 
$$.hi = $4; 
if ( $$.lo > $$ .. hi ){ 
printf ( "interval out of order\n" ) ; 

YYERROR; 
} 

} 
VREG 

{ $$ = vreg[$1]; } 
vexp I+ I vexp 

{ $$.hi = $1.hl. + $3.hi; 
$$.lo = $1. lo + $3.lo; } 

dexp I+ I vexp 
{ $$.hi = $1 + $3.hi; 

$$.lo = $1 + $3.lo; } 
vexp I_ I vexp 

{ $$.hi = $1.hl. $:3.lo; 
$$.lo = $1. lo $3.hi; } 

dexp I - I vexp 
{ $$.hi = $1 $3.1.o; 

$$.lo = $1 $3.hi; } 
vexp I * I vexp 

{ $$ = vmul( $1. lo, ~:I.hi, $3 } ; } 
dexp I * I vexp 

{ $$ = vmul( $1, $1, $3 } ; } 
vexp I/' vexp 

{ if ( dcheck( ~? 3 } ) YYERROR; 
$$ = vdiv( $Llo, $1..hi, $3 } ; } 

dexp I/ 1 vexp 
{ if ( dcheck( $3 ) ) YYERROR; 

$$ = vdiv( $1, $1., $3 ) ; } 
I_ I vexp %prec UMINUS 

{ $$.hi = -$2.lo;; $$.lo = -$2.hi; } 
I ( I vexp I ) I 

C-4 Zilog C-4 



YACC 

C-5 

Zilog YACC 

{ $$ = $2; } 
; 

%% 

I define BSZ 50 
/* buffer size for floating point numbers */ 

yylex () { 

/* lexical analysis */ 

register c; 

while ( 
{ 

(c=getchar ()) 
/* skip over 

if( isupper( c ) ){ 

' ' 
blanks 

) 

*! 

yylval.ival = c 'A'; 
return( VREG ); 
} 

if( isle>wer( c ) ){ 
yylval.ival = c 'a'; 
return( DREG ); 
} -

if ( isd:igit( c ) 11 c-- t I -- . ){ 

} 

/* gobble up digits, points, 

<~har buf[BSZ+l], *cp = buf; 
jlnt dot = 0, exp = 0; 

exponents 

for( ; (cp-buf) <BSZ ++cp ,c=getchar () 

*cp = c; 
if ( isdigit( c ) continue; 
if( c -- '·' ){ 

if ( dot++ I I exp ) return 
( '·' ); 

/* will cause syntax error */ 
continue; 
} 

if ( C -- I e I ) { 

*/ 

) { 

if( exp++ return{ 'e' ); 
/* will cause syntax error */ 

continue; 
} 

/* end of number */ 
break; 
} 

Zilog C-5 



YACC 

INTERVA.L 

Zilog YACC 

*cp = '\0'; 
if ( (cp-buf) >= BSZ 

printf ( "constant too long: 
truncated\n" ); 

else ungetc ( c, stdin ) ; 
/* push back last char read */ 

yylval.dval = atof( buf ); 
return( CONST ); 
} 

return ( c ) ; 
} 

hi lo ( a, b, c, d double a, 
I* returns the smallest interval 
/* containing a, b, c, and d *I 
/* used by * I routines */ I 

INTERVAL v; 

if ( a>b ) { v.hi = a; v.lo = 
else { v.hi = b; v.lo = a; } 

i f ( c>d ) { 
if ( c>v.hi ) v.hi = c; 
if ( d<v.lo ) v. lo = d; 
} 

else { 
if ( d>v.hi ) v.hi = d; 
if ( c<v.lo ) v.lo = c· • • I 

} 
return( v ) ; 
} 

b, c, 
*/ 

b; } 

d; 

INTERVP.~L vmul ( a, b, v ) double a, b; INTERVP~L v; { 
return( hilo( a*v.hi, a*v.lo, b*vohi, b*v.lo) ); 
} 

{ 

dcheck(' v ) INTERVAL v; { 

C-6 

if ( v.hi >= 0. && v.lo <= 0. 
printf ( "divisor interval 
return( 1 ); 
} 

return ( 0 ) ; 
} 

) { 
contains 

INTERVJl~L vd iv ( 
return( 

a I b I 

hi lo ( 
v ) double a, b; INTgRVAL v; 
a/v.hi, a/v.lo, b/v.hi, b/v.lo 

} 

0.\n" 

{ 
) ) ; 

Zilog C-6 



YACC Zilog 

APPENQIX D 
OLD FEATURES 

YACC 

This Appendix mentions synonyms and features that are sup
ported for historical continuity, but, for various reasons, 
are not encouraged. 

1. Literals can also be delimited by double quotes ("). 

2. Literals can be more than one character long. If all 
the characters are alphabetic, numeric, or , the type 
number of the literal is defined, just as if the 
literal did not have the quotes around it. Otherwise, 
it is difficult to find the value for such literals. 

The use of multicharacter literals is likely to mislead 
those unfamiliar with Yacc, since it suggests that Yacc is 
doing a job that must be actually done by the lexical 
analyzer. 

3. Most places where % is legal, backslash {\) can be used 
(\\is the same as%%, \left the same as %left). 

4. There are a number of other synonyms: 

%< is the same as %left 
%> is the same as %right 
%binary and %2 are the same as %nonassoc 
%0 and %term are the same as %token 
%= is the same as %prec 

5. Actions can also have the form 

= { • • • } 
and the curly braces can be dropped if the action is a 
single C statement. 

6. C code between %{ and %} used to be permitted at the 
head of the rules section, as well as in the declara
tion section. 

D-1 Zilog D-1 





Systems Publications 

Reader's Comments 

Your feedback abo11t this document helps us ascertain your needs and fulfill them iD the future. Pl• 
take the time to fill c>ut this questionaite and return it to us. this information will be helpful to us and. 
time, to future users of Ziloq products. 

YourName=~----~----~---------------------------------------~--~ 
Company Name: 

Address: 

Title of this document: 

Briefly describe application: 

Does this publicatioiEl meet your needs? D Yes D No If not, why not? 

How are you uaiDo 1this publication? 

0 As an introduction to the subject? 

0 As a reference manual? 

0 As an instructor or student? 

How do you find thEt material? 

Technicality 

Organization 

Completenesn 

Excellent 

0 

D 

D 

Good 

D 

D 

0 

Poor 

0 

0 

D 

What would have improved the material? ------------------

Other comments and suggestions: 

If you found any mist.e1.kes in this document, please let us know what and where they are: 



Ill II I 
BUSINESS REPLY MAIL 

FIRST CLASS :PERMIT NO. 35 CAMPBELL, CA. 

POSTAGE WILL BE PAID BY ADDRESSEE 

Zilog 
Systems Publications 

l315 Dell Avenue 
Campbell, California 95008 
Attn: Publications Manager 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 





Zilog, Inc. 1315 Dell Ave., Campbell, California 95008 Telephone (408)370-8000 TWX 910-338-7621 




